11.已知函數(shù)y=f(x)的定義域?yàn)镽,對任意a,b∈R都有f(a+b)=f(a)+f(b),且當(dāng)x>0時(shí),f(x)<0恒成立.
(1)證明函數(shù)y=f(x)在R上的單調(diào)性;
(2)討論函數(shù)y=f(x)的奇偶性;
(3)若f(2+x)+f(x)<0,求x的取值范圍.

分析 (1)設(shè)x1>x2,則x1-x2>0,利用f(a+b)=f(a)+f(b)可求得f(x1)-f(x2)=f(x1-x2),又當(dāng)x>0時(shí),f(x)<0,從而得f(x1)<f(x2),可證明函數(shù)y=f(x)在R上單調(diào)遞減;
(2)由f(a+b)=f(a)+f(b)⇒f(x-x)=f(x)+f(-x)=0,從而可知函數(shù)y=f(x)的奇偶性;
(3)由f(2+x)+f(x)<0得f(2+x)<-f(x)=f(-x),利用y=f(x)在R上單調(diào)遞減即可求得x的取值范圍.

解答 (1)證明:設(shè)x1>x2,則x1-x2>0,而f(a+b)=f(a)+f(b)
∴f(x1)-f(x2)=f((x1-x2)+x2)-f(x2
=f(x1-x2)+f(x2)-f(x2
=f(x1-x2),
又當(dāng)x>0時(shí),f(x)<0恒成立,
∴f(x1)<f(x2),
∴函數(shù)y=f(x)是R上的減函數(shù);
(2)證明:由f(a+b)=f(a)+f(b),
得f(x-x)=f(x)+f(-x),
即f(x)+f(-x)=f(0),而f(0)=0,
∴f(-x)=-f(x),
即函數(shù)y=f(x)是奇函數(shù).
(3)解:由f(2+x)+f(x)<0,
得f(2+x)<-f(x),
又y=f(x)是奇函數(shù),
即f(2+x)<f(-x),
又y=f(x)在R上是減函數(shù),
∴2+x>-x解得x>-1.

點(diǎn)評 本題考查抽象函數(shù)及其應(yīng)用,著重考查函數(shù)單調(diào)性的判斷與證明,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)計(jì)算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的結(jié)果猜想一個(gè)普遍的結(jié)論,并加以證明;
(3)求值:f(1)+f(2)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=log3$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$的值域?yàn)閇0,1],則b與c的和為0或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)f(x)=$\frac{p{x}^{2}+3}{3x-q}$是奇函數(shù),且f(2)=$\frac{5}{2}$,求實(shí)數(shù)p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.化簡:
(1)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)×$\root{3}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{1}{2}$x+m-lnx的定義域?yàn)閇1,3],值域?yàn)镸,若對于任意的a,b,c∈M,a,b,c都分別是一個(gè)三角形的三邊的長度,則m的取值范圍是(ln2-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)二次函數(shù)f(x)=ax2+bx+c滿足f(x+1)-f(x)=2x-1,且f(0)=-1,求a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{cos(-α-π)•sin(2π+α)}{sin(-α-π)cos(-α)tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=2${\;}^{-{x}^{2}+4x-3}$的遞增區(qū)間為(-∞,2].

查看答案和解析>>

同步練習(xí)冊答案