8.已知函數(shù)f(x)的定義域是R,f′(x)是f(x)的導(dǎo)數(shù),f(1)=e,g(x)=f′(x)-f(x),g(1)=0,g(x)的導(dǎo)數(shù)恒大于零,函數(shù)h(x)=f(x)-ex(e=2.71828…是自然對(duì)數(shù)的底數(shù))的最小值是( 。
A.-1B.0C.1D.2

分析 根據(jù)條件判斷f′(x)與f(x)的關(guān)系,構(gòu)造函數(shù)求出函數(shù)的最值,進(jìn)行比較即可.

解答 解:∵f(1)=e,g(x)=f′(x)-f(x),g(1)=0,
∴g(1)=f′(1)-f(1)=0,則f′(1)=f(1)=e,
g′(x)>0恒成立,
即g(x)為增函數(shù),
則當(dāng)x>1時(shí),g(x)>g(1)=0,
即f′(x)-f(x)>0,
當(dāng)x<1時(shí),g(x)<g(1)=0,
即f′(x)-f(x)<0,
構(gòu)造函數(shù)m(x)=$\frac{f(x)}{{e}^{x}}$,
則m′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
則當(dāng)x>1時(shí),m′(x)>0,此時(shí)遞增,
當(dāng)x<1時(shí),m′(x)<0,此時(shí)遞減,
即函數(shù)m(x)取得極小值同時(shí)也是最小值m(1)=$\frac{f(1)}{e}$=$\frac{e}{e}$=1
即m(x)=$\frac{f(x)}{{e}^{x}}$≥1,
則f(x)≥ex,
則h(x)=f(x)-ex≥ex-ex=0,
即h(x)的最小值為0.
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)導(dǎo)數(shù)之間的關(guān)系,利用構(gòu)造法是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線$\sqrt{3}$x-y-3=0的傾斜角是( 。
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{π}{6}$D.$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點(diǎn)分別為A(-2,0),B(2,0),離心率e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)若F1,F(xiàn)2是橢圓M的左,右焦點(diǎn),以線段F1F2為直徑作圓N,點(diǎn)C(C點(diǎn)不同于F1,F(xiàn)2,且不在y軸上)為圓N上任一點(diǎn),直線F1C與直線x=$\sqrt{3}$交于點(diǎn)R,D為線段RF2的中點(diǎn),試判斷直線CD與圓N的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,已知四棱錐S-ABCD的側(cè)棱與底面邊長(zhǎng)都是2,且底面ABCD是正方形,則側(cè)棱與底面所成的角( 。
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=log2(4x+1)+kx是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)$g(x)={log_2}(a•{2^x}-\frac{4}{3}a)(a∈R)$,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.集合A={x|x2-3x-10≤0},集合B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈R時(shí),沒有元素x使x∈A與x∈B同時(shí)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.下列各式中,正確的序號(hào)是②④⑤
①0={0};          
②0∈{0};        
③{1}∈{1,2,3};
④{1,2}⊆{1,2,3};                
⑤{a,b}⊆{a,b}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖示,根據(jù)莖葉圖解答下列問(wèn)題;
(1)計(jì)算甲班與乙班的身高數(shù)據(jù)的中位數(shù).
(2)判斷哪個(gè)班的平均身高較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.?dāng)?shù)列{an},an≥0,a1=0,an+12+an+1-1=an2,n∈N*
(1)求證:an<1;
(2)求證:數(shù)列{an}遞增;
(3)求證:$\frac{1}{1+{a}_{1}}$+$\frac{1}{(1+{a}_{1})(1+{a}_{2})}$+…+$\frac{1}{(1+{a}_{1})(1+{a}_{2})…(1+{a}_{n})}$<3.

查看答案和解析>>

同步練習(xí)冊(cè)答案