【題目】如圖,曲線由兩個橢圓和橢圓組成,當(dāng)成等比數(shù)列時,稱曲線貓眼曲線”.

1)若貓眼曲線過點,且的公比為,求貓眼曲線的方程;

2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點的直線與該曲線相交,交橢圓所得弦的中點為M,交橢圓所得弦的中點為N,求證:為與無關(guān)的定值;

3)若斜率為的直線為橢圓的切線,且交橢圓于點,為橢圓上的任意一點(點與點不重合),求面積的最大值.

【答案】1,2)見解析(3)見解析

【解析】

由題意知,從而求貓眼曲線的方程;設(shè)交點,,從而可得,聯(lián)立方程化簡可得,;從而解得設(shè)直線l的方程為,聯(lián)立方程化簡,從而可得,同理可得,從而利用兩平行線間距離表示三角形的高,再求;從而求最大面積.

1,,

,

2)設(shè)斜率為的直線交橢圓于點,線段中點

,得

存在且,,且

,即

同理,

得證

3)設(shè)直線的方程為

,

,

,

兩平行線間距離:

的面積最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩個定點,,如果對于常數(shù),在函數(shù),的圖像上有且只有6個不同的點,使得成立,那么的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點與短軸兩端點構(gòu)成一個面積為的等腰直角三角形,為坐標(biāo)原點.

(1)求橢圓的方程;

(2)設(shè)點在橢圓上,點在直線上,且,求證:為定值;

(3)設(shè)點在橢圓上運動,,且點到直線的距離為常數(shù),求動點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,,分別為,的中點.

1)證明:平面

2)若與平面所成的角為,,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的首項為p,公差為,對于不同的自然數(shù),直線軸和指數(shù)函數(shù)的圖象分別交于點(如圖所示),記的坐標(biāo)為,直角梯形、的面積分別為,一般地記直角梯形的面積為.

1)求證:數(shù)列是公比絕對值小于1的等比數(shù)列;

2)設(shè)的公差,是否存在這樣的正整數(shù),構(gòu)成以,為邊長的三角形?并請說明理由;

3)設(shè)的公差為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列各項的和?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)的一點,如果∠MGF=MGH,MG和平面EFG所成角的正切值為那么點M到平面EFGH的距離是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項和為,在同一個坐標(biāo)系中,的部分圖象如圖所示,則( ).

A. 當(dāng)時,取得最大值 B. 當(dāng)時,取得最大值

C. 當(dāng)時,取得最小值 D. 當(dāng)時,取得最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個國際象棋棋盤(由8×8個方格組成),其中有一個小方格因破損而被剪去(破損位置不確定).L形骨牌由三個相鄰的小方格組成,如圖所示.現(xiàn)要將這個破損的棋盤剪成數(shù)個L形骨牌,則( 。

A.至多能剪成19L形骨牌

B.至多能剪成20L形骨牌

C.最多能剪成21L形骨牌

D.前三個答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,每一個人的出生年份對應(yīng)了十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個,甲、乙、丙三位同學(xué)依次選一個作為禮物,甲同學(xué)喜歡牛和馬,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個吉祥物都喜歡,如果讓三位同學(xué)選取的禮物都滿意,那么不同的選法有(  )

A. 50B. 60C. 70D. 90

查看答案和解析>>

同步練習(xí)冊答案