(本小題滿分14分)
如圖,在六面體ABCD-A1B1C1D1中,四邊形ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
(Ⅰ)求證:A1C1與AC共面,B1D1與BD共面;
(Ⅱ)求證:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大。ㄓ梅慈呛瘮(shù)值表示).
(Ⅰ)A1C1與AC共面,B1D1與BD共面
(Ⅱ)平面A1ACC1⊥平面B1BDD1
(Ⅲ)二面角的大小為
【解析】解法1(向量法):
以為原點,以所在直線分別為軸,軸,軸建立空間直角坐標系如圖,
則有.
(Ⅰ)證明:
.
.
與平行,與平行,
于是與共面,與共面.
(Ⅱ)證明:,
,
,.
與是平面內(nèi)的兩條相交直線.
平面.
又平面過.
平面平面.
(Ⅲ)解:.
設為平面的法向量,
,.
于是,取,則,.
設為平面的法向量,
,.
于是,取,則,.
.
二面角的大小為.
解法2(綜合法):
(Ⅰ)證明:平面,平面.
,,平面平面.
于是,.
設分別為的中點,連結,
有.
,
于是.
由,得,
故,與共面.
過點作平面于點,
則,連結,
于是,,.
,.
,.
所以點在上,故與共面.
(Ⅱ)證明:平面,,
又(正方形的對角線互相垂直),
與是平面內(nèi)的兩條相交直線,
平面.
又平面過,平面平面.
(Ⅲ)解:直線是直線在平面上的射影,,
根據(jù)三垂線定理,有.
過點在平面內(nèi)作于,連結,
則平面,
于是,
所以,是二面角的一個平面角.
根據(jù)勾股定理,有.
,有,,,.
,,
二面角的大小為.
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com