若點(diǎn)(x,y)在不等式組表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則的取值范圍是(   )

  

 

【答案】

C

【解析】畫出不等式組 表示的平面區(qū)域,可得 的取值范圍是 .  

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=-
1
4
x4+
2
3
x3+ax2-2x-2
,其中a為實(shí)常數(shù),已知函數(shù)y=f(x)的圖象在點(diǎn)(-1,f(-1))處的切線與y軸垂直.
(1)求實(shí)數(shù)a的值;
(2)若關(guān)于x的方程f(3x)=m有三個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),不等式f(x)<0的解集是(0,5),且f(x)在點(diǎn)(1,f(1))處的切線與直線6x+y+1=0平行.
(1)求f(x)的解析式;
(2)是否存在t∈N*,使得方程f(x)+
37x
=0
在區(qū)間(t,t+1)內(nèi)有兩個(gè)不等的實(shí)數(shù)根?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+2ax-ln(1+x)+1.
(1)若函數(shù)f(x)的圖象在點(diǎn)(0,f(0))處的切線方程是x-y+b=0,求實(shí)數(shù)a,b的值;
(2)當(dāng)a=
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=x2+(2a-
1
2
)x+
1
2
(a+1)在[0,2]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍.
(B類)設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
12
ax2-lnx

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)討論f(x)的單調(diào)性;
(3)是否存在a的值,使得方程f(x)=2有兩個(gè)不等的實(shí)數(shù)根?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案