已知雙曲線的焦點為F1、F2,M為雙曲線上一點,以F1F2為直徑的圓與雙曲線的一個交點為M,且,則雙曲線的離心率( )
A.
B.
C.2
D.
【答案】分析:根據(jù)F1F2為圓的直徑,推斷出∠F1MF2為直角,進而可推斷出tan∠MF1F2=求得|MF1|的關(guān)系|MF2|,設(shè)|MF1|=t,|MF2|=2t.根據(jù)雙曲線的定義求得a,利用勾股定理求得c,則雙曲線的離心率可得.
解答:解:∵F1F2為圓的直徑
∴△MF1F2為直角三角形
∴tan∠MF1F2==
設(shè)|MF1|=t,|MF2|=2t
根據(jù)雙曲線的定義可知a==t
4c2=t2+4t2=5t2,
∴c=t
∴e==
故選D.
點評:本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生數(shù)形結(jié)合思想的運用和基本的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心為原點,F(xiàn)(3,0)是雙曲線的-個焦點,
5
x-2y=0
是雙曲線的一條漸近線,則雙曲線的標(biāo)準(zhǔn)方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:044

  已知拋物線的焦點為F,準(zhǔn)線為l,是否存在雙曲線C,同時滿足以下兩個條件:

  (Ⅰ)雙曲線C的一個焦點為F,相應(yīng)于F的準(zhǔn)線為l;

  (Ⅱ)雙曲線C截與直線x-y=0垂直的直線所得線段AB的長為2,并且線段AB的中點恰好在直線x-y=0上.

若存在,求出該雙曲線C的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

  已知拋物線的焦點為F,準(zhǔn)線為l,是否存在雙曲線C,同時滿足以下兩個條件:

 。1)雙曲線C的一個焦點為F,相應(yīng)于F的準(zhǔn)線為l

 。2)雙曲線C上有A、B兩點關(guān)于直線對稱,且

  若存在這樣的雙曲線,求出該雙曲線C的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

  已知拋物線的焦點為F,準(zhǔn)線為l,是否存在雙曲線C,同時滿足以下兩個條件:

 。1)雙曲線C的一個焦點為F,相應(yīng)于F的準(zhǔn)線為l

 。2)雙曲線C上有AB兩點關(guān)于直線對稱,且

  若存在這樣的雙曲線,求出該雙曲線C的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(新課標(biāo)全國卷)解析版(理) 題型:選擇題

 [番茄花園1] )已知雙曲線的中心為原點,的焦點,過F的直線相交于A,B兩點,且AB的中點為,則的方程式為

(A) (B)      (C)          (D)

 


 [番茄花園1]2.

查看答案和解析>>

同步練習(xí)冊答案