已知函數(shù)f(x)=ax3+bx2+c(a,b,c∈R,a≠0).
(1)若函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(0,0),(-1,0),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a=b=1,函數(shù)y=f(x)與直線y=2的圖象有兩個(gè)不同的交點(diǎn),求c的值.

解:(1)把點(diǎn)P(-1,0)代入y=f(x)得-a+b+c=0,又c=0,故a=b
由f’(x)=3ax2+2ax=ax(3x+2)=0得,x1=0,x2=-,
故當(dāng)a>0時(shí),f(x)的單調(diào)遞增區(qū)間是(-∞,-),(0,+∞)
單調(diào)遞減區(qū)間是(-,0)
當(dāng)a<0時(shí),f(x)的單調(diào)遞減區(qū)間是(-∞,-),(0,+∞)
單調(diào)遞增區(qū)間是(-,0)(6分)
(2)當(dāng)a=b=1時(shí),f(x)的單調(diào)遞增區(qū)間是(-∞,-),(0,+∞),
單調(diào)遞減區(qū)間是(-,0)
故當(dāng)x=-時(shí),f(x)取極大值為f(-)=-++c,
當(dāng)x=0時(shí),f(x)的極小值為f(0)=c
要使函數(shù)y=f(x)與直線y=2的圖象有兩個(gè)不同的交點(diǎn),則必須滿足-++c=2或c=2
故c=或2.(6分)
分析:(1)先由“函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(0,0),(-1,0)”,求得函數(shù)f(x),再求導(dǎo),由f′(x)≥0求得單調(diào)增區(qū)間,由f′(x)≤0求得單調(diào)減區(qū)間,要注意討論.
(2)當(dāng)a=b=1時(shí),分別求得函數(shù)的極大值和極小值,再由“函數(shù)y=f(x)與直線y=2的圖象有兩個(gè)不同的交點(diǎn)”求解.
點(diǎn)評(píng):本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于等于零,還考查了導(dǎo)數(shù)法研究曲線的相對(duì)位置,基本思路是:求導(dǎo),明確極值點(diǎn),再動(dòng)靜結(jié)合求解參數(shù)的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案