(本小題滿分14分)
已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為,過點(diǎn)M(0,)與x軸不垂直的直線交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.
(1) (2)先假設(shè)存在,聯(lián)立方程組,利用·可以求出存在
N(0,1)滿足要求
【解析】
試題分析:(1)因?yàn)殡x心率為,又,∴a=,c=1,
故b=1,故橢圓的方程為. ……4分
(2)由題意設(shè)直線的方程為y=kx-,
聯(lián)立方程得(2k2+1)x2-kx-=0,
設(shè)P(x1, y1),Q(x2, y2),
則x1+x2=,x1·x2=, ……8分
假設(shè)在y軸上存在定點(diǎn)N(0,m)滿足題設(shè),則
,,
·= x1x2+(y1-m)(y2-m)= x1x2+ y1y2-m(y1+y2) +m2
= x1x2+(kx1-)( kx2-)-m(kx1-+ kx2-) +m2
=(k2+1) x1x2-k(+m)(x1+x2)+m2+m+
=-k(+m)+m2+m+
=, ……12分
由假設(shè)得對于任意的k∈R,·=0恒成立,
即解得m=1,
因此,在y軸上存在定點(diǎn)N,
使得以PQ為直徑的圓恒過這個(gè)點(diǎn),點(diǎn)N的坐標(biāo)為(0,1). ……14分
考點(diǎn):本小題主要考查橢圓的標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系的判定和應(yīng)用、韋達(dá)定理和向量數(shù)量積的運(yùn)算和應(yīng)用,考查學(xué)生的運(yùn)算求解能力和數(shù)形結(jié)合思想的應(yīng)用.
點(diǎn)評:對于探究性問題,一般是先假設(shè)存在,然后計(jì)算,如果能求出,則說明存在,如果求不出或得出矛盾,則說明不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com