【題目】已知函數(shù).
(1)若關(guān)于的不等式的解集是,求,的值;
(2)設(shè)關(guān)于的不等式的解集是,集合,若,求實(shí)數(shù)的取值范圍.
【答案】(1) ,.
(2).
【解析】分析:(1)先根據(jù)不等式解集與對應(yīng)方程根的關(guān)系得x2-(a+1)x+1=0的兩個(gè)實(shí)數(shù)根為m、2,再利用韋達(dá)定理得結(jié)果.(2)當(dāng)A∩B=時(shí),即不等式f(x)>0對x∈B恒成立,再利用變量分離法得a+1<x+的最小值,最后根據(jù)基本不等式求最值,即得結(jié)果.
詳解:(1)∵關(guān)于x的不等式f(x)<0的解集是{x|m<x<2},
∴對應(yīng)方程x2-(a+1)x+1=0的兩個(gè)實(shí)數(shù)根為m、2,
由根與系數(shù)的關(guān)系,得,解得a=,m=;
(2)∵關(guān)于x的不等式f(x)≤0的解集是A,
集合B={x|0≤x≤1},當(dāng)A∩B=時(shí),即不等式f(x)>0對x∈B恒成立;
即x∈時(shí),x2-(a+1)x+1>0恒成立,
∴a+1<x+對于x∈(0,1]恒成立(當(dāng)時(shí),1>0恒成立);
∵當(dāng)x∈(0,1]時(shí),
∴a+1<2,即a<1,∴實(shí)數(shù)a的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于實(shí)數(shù)和兩定點(diǎn),在某圖形上恰有個(gè)不同的點(diǎn),使得,稱該圖形滿足“度契合”.若邊長為4的正方形中,,且該正方形滿足“4度契合”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 左焦點(diǎn),左頂點(diǎn),橢圓上一點(diǎn)滿足軸,且點(diǎn)在軸下方, 連線與左準(zhǔn)線交于點(diǎn),過點(diǎn)任意引一直線與橢圓交于,連結(jié)交于點(diǎn),若實(shí)數(shù)滿足: , .
(1)求的值;
(2)求證:點(diǎn)在一定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(1)求證:平面PCD⊥平面PAD;
(2)求三棱錐P—ABC的體積;
(3)在棱PC上是否存在點(diǎn)E,使得BE∥平面PAD?若存在,
請確定點(diǎn)E的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為實(shí)數(shù)).
(1) 若函數(shù)在處的切線與直線平行,求實(shí)數(shù)a的值;
(2) 若,求函數(shù)在區(qū)間上的值域;
(3) 若函數(shù)在區(qū)間上是增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線。
(Ⅰ)求證:直線與圓C恒有兩個(gè)交點(diǎn);
(Ⅱ)求出直線被圓C截得的最短弦長,并求出截得最短弦長時(shí)的的值;
(Ⅲ)設(shè)直線與圓C的兩個(gè)交點(diǎn)為M,N,且(點(diǎn)C為圓C的圓心),求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.
【答案】3
【解析】 由已知中的三視圖可得該幾何體是一個(gè)以直角梯形為底面,梯形上下邊長為和,高為,
如圖所示, 平面,
所以底面積為,
幾何體的高為,所以其體積為.
點(diǎn)睛:在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要從三個(gè)視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實(shí)際形狀時(shí),一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.
【題型】填空題
【結(jié)束】
16
【題目】已知橢圓: 的右焦點(diǎn)為, 為直線上一點(diǎn),線段交于點(diǎn),若,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a4=2且,數(shù)列滿足 ,
(1)證明:數(shù)列{an}為等差數(shù)列;
(2)是否存在正整數(shù),(1<),使得成等比數(shù)列,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若, ,則實(shí)數(shù)的取值范圍為__________.
【答案】
【解析】當(dāng)m=0時(shí),符合題意。
當(dāng)m≠0時(shí), ,則0<m<4,
則0m<4
答案為: .
點(diǎn)睛:解本題的關(guān)鍵是處理二次函數(shù)在區(qū)間上大于0的恒成立問題,對于二次函數(shù)的研究一般從以幾個(gè)方面研究:
一是,開口;
二是,對稱軸,主要討論對稱軸與區(qū)間的位置關(guān)系;
三是,判別式,決定于x軸的交點(diǎn)個(gè)數(shù);
四是,區(qū)間端點(diǎn)值.
【題型】填空題
【結(jié)束】
15
【題目】已知橢圓: 的右焦點(diǎn)為, 為直線上一點(diǎn),線段交于點(diǎn),若,則__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com