【題目】如圖,在四棱錐中, 是正方形, 平面 , , 分別是 , , 的中點(diǎn).

1)求證:平面平面

2)在線段上確定一點(diǎn),使平面,并給出證明.

【答案】(1)見解析;(2)見解析

【解析】試題分析:1)先通過(guò)得到線面平行即,同理可證,根據(jù)面面平行判定定理可得結(jié)果;(2)為線段中點(diǎn)時(shí), 平面,通過(guò)先證,得到,根據(jù)等腰三角形的性質(zhì)得,運(yùn)用線面垂直的判定定理即可得到結(jié)論.

試題解析:中, 分別是 的中點(diǎn),∴,又∵四邊形為正方形,得,,平面 ,.同理, 是面內(nèi)相交直線,∴平面平面 中點(diǎn)時(shí),

2為線段中點(diǎn)時(shí), 平面,證明:取中點(diǎn),連接, ,,且,∴四邊形為梯形,由, ,得, ,,又為等腰直角三角形, 為斜邊中點(diǎn),∴, 是面內(nèi)的相交直線,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)A(1,2),B(3,1)到直線l距離分別是 ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明計(jì)劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計(jì)數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時(shí)容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機(jī)選擇8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設(shè)是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學(xué)期望;

(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=n2 , 等比數(shù)列{bn}滿足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)米布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口斷井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見下表:

井號(hào)

坐標(biāo)

鉆探深度

出油量

(1)號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)號(hào)并計(jì)算出的的值(精確到)與(1)中的值差不超過(guò),則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)的動(dòng)點(diǎn)P到定直線lx的距離與點(diǎn)P到定點(diǎn)F(,0)之比為.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線AB,交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1·k2是否為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買意愿弱;若得分不低于60分,說(shuō)明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?

購(gòu)買意愿強(qiáng)

購(gòu)買意愿弱

合計(jì)

20~40歲

大于40歲

合計(jì)

(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)對(duì)任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, yi=184, =720.
(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線性回歸方程y=bx+a中,b= ,a= ﹣b ,其中 為樣本平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案