(12分)某果園要將一批水果用汽車從所在城市甲運至銷售商所在城市乙。已知從城市甲到城市乙只有兩條公路,且運費由果園承擔(dān)。若果園恰能在約定日期(×月×日)將水果送到,則銷售商一次性支付給果園20萬元;若在約定日期前送到,每提前一天銷售商將多支付給果園1萬元。若在約定日期后運到,每遲到一天銷售商將少支付給果園l萬元。為保證水果新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送水果。已知下表內(nèi)的信息:
統(tǒng)計信息
汽車行駛路線
不堵車的情況下到達
城市乙所需時間(天)
堵車的情況下到達
城市乙所需時間(天)
堵車的
概率
運費
(萬元)
公路1
2
3

1.6
公路2
1
4

0.8
(1)記汽車走公路1時果園獲得的毛利潤為(單位:萬元),求的分布列和數(shù)學(xué)期望;
(2)假設(shè)你是果園的決策者,你選擇哪條公路運送水果有可能讓果園獲得的毛利潤更多?


18.4
17.4
P
0.9
0.1
 
 
注:毛利潤=銷售商支付給果園的費用-運費

(Ⅰ) 萬元   (Ⅱ)略
(1)走公路1不堵車時果園獲得的毛利潤萬元
堵車時果園獲得的毛利潤萬元 ,萬元
(2)由(1)同理可得:走公路2時果園獲得的毛利潤的期望萬元,所以走公路2時果園獲得的毛利潤更多
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

同時擲兩枚骰子,它們各面分別刻有:,若為擲得點數(shù)之積,求    。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)將數(shù)字分別寫在大小、形狀都相同的張卡片上,將它們反扣后(數(shù)字向下),再從左到右隨機的依次擺放,然后從左到右依次翻卡片:若第一次就翻出數(shù)字則停止翻卡片;否則就繼續(xù)翻,若將翻出的卡片上的數(shù)字依次相加所得的和是的倍數(shù)則停止翻卡片;否則將卡片依次翻完也停止翻卡片.設(shè)翻卡片停止時所翻的次數(shù)為隨機變量,求出的分布列和它的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)一次智力競賽中,共分三個環(huán)節(jié):選答、搶答、風(fēng)險選答,在第一環(huán)節(jié)“選答”中.每個選手可以從6道題(其中4道選擇題,2道操作題)中任意選3道題作答,答對每道題可得100分;在第二環(huán)節(jié)“搶答”中,一共為參賽選手準備了5道搶答題.答對一道得1 00分,在每一道題的搶答中,每位選手搶到的概率是相等的;在第三環(huán)節(jié)“風(fēng)險選答”中,一共為選手準備了A、B、C 三類不同的題目,選手每答對一道A類、B類、C類的題目將分別得到300分、200分、100分,但如果答錯,則相應(yīng)地要扣除300分、200分、100分.而選手答對一道A類、B類、C類題目的概率分別是0.6、0.7、0.8,現(xiàn)有甲、乙、丙三位選手參加比賽,試求:(1)乙選手在第一環(huán)節(jié)中,至少選中一道操作題的概率;
(2)甲選手在第二環(huán)節(jié)中搶到的題數(shù)多于乙選手而不多于丙選手的概率;(3)在第三環(huán)節(jié)中,就每道題而言,丙選手選擇哪類題目得分的期望值更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩組中共抽取3名工人進行技術(shù)考核.
(I)求從甲、乙兩組各抽取的人數(shù);          
(II)求從甲組抽取的工人中恰有1名女工人的概率;
(III)記表示抽取的3名工人中男工人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機變量ξ和η,其中η=10ξ+2,且E(η)=20,若ξ的分布列如下表,則m的值為( 。
ξ1234
P
1
4
mn
1
12
A.
47
60
B.
37
60
C.
27
60
D.
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一次運動會中甲、乙兩名射擊運動員各射擊十次的成績(環(huán))如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個人的成績;
(2)分別計算兩個樣本的平均數(shù)
.
x
和標準差s,并根據(jù)計算結(jié)果估計哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3題,每人答對其中2題就停止答題,即闖關(guān)成功.已知在6道被選題中,甲能答對其中的4道題,乙答對每道題的概率都是
2
3

(Ⅰ)求甲、乙至少有一人闖關(guān)成功的概率;
(Ⅱ)設(shè)甲答對題目的個數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲,乙兩人在相同條件下練習(xí)射擊,每人打發(fā)子彈,命中環(huán)數(shù)如下

  6
   8
   9
   9
   8

  10
   7
   7
   7
   9
則兩人射擊成績的穩(wěn)定程度是__________________。

查看答案和解析>>

同步練習(xí)冊答案