已知二次函數(shù)f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求下列函數(shù)f(x)的解析式.
(1) 已知f(1-x)=2x2-x+1,求f(x);
(2) 已知f=x2+,求f(x);
(3) 已知一次函數(shù)f(x)滿足f(f(x))=4x-1,求f(x);
(4) 定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為奇函數(shù).
(1)若,求函數(shù)的解析式;
(2)當(dāng)時(shí),不等式在上恒成立,求實(shí)數(shù)的最小值;
(3)當(dāng)時(shí),求證:函數(shù)在上至多有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某醫(yī)藥研究所開(kāi)發(fā)一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時(shí)間x(小時(shí))之間滿足y=其對(duì)應(yīng)曲線(如圖所示)過(guò)點(diǎn).
(1)試求藥量峰值(y的最大值)與達(dá)峰時(shí)間(y取最大值時(shí)對(duì)應(yīng)的x值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長(zhǎng)的有效時(shí)間(精確到0.01小時(shí))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中且),是的反函數(shù).
(1)已知關(guān)于的方程在區(qū)間上有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),討論函數(shù)的奇偶性和增減性;
(3)設(shè),其中.記,數(shù)列的前項(xiàng)的和為(),
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域是,對(duì)于任意的,有,且當(dāng)時(shí),.
(1)求的值;
(2)判斷函數(shù)的奇偶性;
(3)用函數(shù)單調(diào)性的定義證明函數(shù)為增函數(shù);
(4)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
我國(guó)是水資源較貧乏的國(guó)家之一,各地采用價(jià)格調(diào)控等手段來(lái)達(dá)到節(jié)約用水的目的,某市每戶每月用水收費(fèi)辦法是:水費(fèi)=基本費(fèi)+超額費(fèi)+定額損耗費(fèi).且有如下兩條規(guī)定:
①若每月用水量不超過(guò)最低限量立方米,只付基本費(fèi)10元加上定額損耗費(fèi)2元;
②若用水量超過(guò)立方米時(shí),除了付以上同樣的基本費(fèi)和定額損耗費(fèi)外,超過(guò)部分每立方米加付元的超額費(fèi).
解答以下問(wèn)題:(1)寫出每月水費(fèi)(元)與用水量(立方米)的函數(shù)關(guān)系式;
(2)若該市某家庭今年一季度每月的用水量和支付的費(fèi)用如下表所示:
月份 | 用水量(立方米) | 水費(fèi)(元) |
一 | 5 | 17 |
二 | 6 | 22 |
三 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的定義域;
(2)設(shè)α是第四象限的角,且tan α=-,求f(α)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com