【題目】函數(shù).

(1)討論的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn)、,且,求證: .

【答案】(1)見解析;(2)見解析.

【解析】試題分析:先求出函數(shù)的定義域,再求導(dǎo)數(shù),討論與0的關(guān)系,從而求出函數(shù)的單調(diào)性若函數(shù)有兩個(gè)極值點(diǎn)、,且,則必是,得、的二根,

, 給出的關(guān)系,下證,構(gòu)造新函數(shù),證明不等式

解析: 的定義域是, ,

(1)由題設(shè)知, ,令,這是開口向上,以為對(duì)稱軸的拋物線, ,

①當(dāng),即時(shí), ,即上恒成立.

②當(dāng),即時(shí),由,令, ,則, .

1)當(dāng)時(shí), ,故在上, ,即,在上, ,即.

2)當(dāng)時(shí),即時(shí),

+

0

-

0

+

+

0

-

0

+

遞增

遞減

遞增

綜上:

時(shí), 上單調(diào)遞減,在上單調(diào)遞增;

時(shí), 上單調(diào)遞減,在上單調(diào)遞增;

時(shí), 上單調(diào)遞增.

(2)若函數(shù)有兩個(gè)極值點(diǎn)、,且,

則必是, ,則

上單減,在上單增,則,

的二根,

,即 ,

∴若證成立,只需證

.

即證

對(duì)恒成立,

設(shè)

,

當(dāng)時(shí), ,

,故上單增,

,

對(duì)恒成立,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關(guān)系分別為,,(其中都為常數(shù)),函數(shù)對(duì)應(yīng)的曲線如圖所示.

1)求函數(shù)的解析式;

2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題:實(shí)數(shù)滿足,其中,命題:實(shí)數(shù)滿足.

(1),且為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,為銳角,底面是以為斜邊的等腰直角三角形,

(1)證明:平面 平面

(2)若直線與底面成角為, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)上單調(diào)遞減,且,則不等式的解集________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程.以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系,且在兩坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)過曲線上任意一點(diǎn)作與直線相交的直線,該直線與直線所成的銳角為,設(shè)交點(diǎn)為,求的最大值和最小值,并求出取得最大值和最小值時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】房產(chǎn)稅改革向前推進(jìn)之路,雖歷經(jīng)坎坷,但步伐從未停歇,作為未來的新增稅種,十二屆全國人大常委會(huì)已將房產(chǎn)稅立法正式列入五年立法規(guī)劃。某市稅務(wù)機(jī)關(guān)為了進(jìn)一步了解民眾對(duì)政府擇機(jī)出臺(tái)房產(chǎn)稅的認(rèn)同情況,隨機(jī)抽取了一小區(qū)住戶進(jìn)行調(diào)查,各戶人均月收入(單位:千元)的頻數(shù)分布及贊成出臺(tái)房產(chǎn)稅的戶數(shù)如下表:

人均月收入

頻數(shù)

6

10

13

11

8

2

不贊成戶數(shù)

5

9

12

9

4

1

若將小區(qū)人均月收入不低于7.5千元的住戶稱為“高收入戶”,人均月收入低于7.5千元的住戶稱為“非高收入戶”,有列聯(lián)表:

非高收入戶

高收入戶

總計(jì)

不贊成

贊成

總計(jì)

(1)根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為“收入的高低”與“贊成出臺(tái)房產(chǎn)稅”有關(guān).

(2)現(xiàn)從月收入在的住戶中隨機(jī)抽取兩戶,求所抽取的兩戶都不贊成出臺(tái)房產(chǎn)稅的概率;

附:臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過第一、二、三象限的概率;

(2)某校早上8:10開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~8:00之間到校,且每人到該時(shí)間段內(nèi)到校時(shí)刻是等可能的,求兩人到校時(shí)刻相差10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號(hào)的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號(hào)空氣凈化器(百臺(tái)),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:

(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);

(2)工廠生產(chǎn)多少百臺(tái)產(chǎn)品時(shí),可使利潤最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案