已知曲線(xiàn)f(x)=x4+ax2+bx,且f'(0)=-13,f'(-1)=-27,則曲線(xiàn)在x=1處切線(xiàn)的傾斜角為( 。
分析:求導(dǎo)函數(shù),利用f'(0)=-13,f'(-1)=-27,可求a,b的值,從而可求曲線(xiàn)在x=1處切線(xiàn)的傾斜角.
解答:解:求導(dǎo)函數(shù)可得:f′(x)=4x3+2ax+b,
∵f'(0)=-13,f'(-1)=-27,
∴b=-13,-4-2a+b=-27
∴b=-13,a=5
∴f′(x)=4x3+10x-13
∴f′(1)=4+10-13=1
∴曲線(xiàn)在x=1處切線(xiàn)的傾斜角為
π
4

故選D.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)f(x)=
x-1
在點(diǎn)A(2,1)處的切線(xiàn)為直線(xiàn)l
(1)求切線(xiàn)l的方程;
(2)求切線(xiàn)l,x軸及曲線(xiàn)所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+5,若曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)斜率為3,且當(dāng)x=
23
時(shí),y=f(x)有極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)f(x)=x3+bx2+cx在點(diǎn)A(-1,f(-1)),B(3,f(3))處的切線(xiàn)互相平行,且函數(shù)f(x)的一個(gè)極值點(diǎn)為x=0.
(Ⅰ)求實(shí)數(shù)b,c的值;
(Ⅱ)若函數(shù)y=f(x),x∈[-
12
,3]
的圖象與直線(xiàn)y=m恰有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案