(1)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
(2)若不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.
(1)直線的參數(shù)方程為 
x = -3 + 
3
2
s
y = 
1
2
s
   (s 為參數(shù)),曲線
x=s+
1
s
y=s-
1
s
可以化為  x2-y2=4.
將直線的參數(shù)方程代入上式,得  s2-6
3
s+ 10 = 0

設(shè)A、B對(duì)應(yīng)的參數(shù)分別為 s1,s2,∴s1+  s2= 6 
3
,s1•s2=10.
∴AB=|s1-s2|=
(s1s2)2-4s1s2
=2
17

(2)由柯西不等式9=(12+22+22)•(x2+y2+z2)≥(1•x+2•y+2•z)2
即x+2y+2z≤3,當(dāng)且僅當(dāng)
x
1
=
y
2
=
z
2
>0
x2+y2+z2=1

x=
1
5
y=
2
5
,z=
2
5
時(shí),x+2y+2z取得最大值3.
∵不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,
只需|a-1|≥3,解得a-1≥3或a-1≤-3,∴a≥4或∴a≤-2.
即實(shí)數(shù)的取值范圍是(-∞,-2]∪[4,+∞).
故答案為:a≥4或a≤-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
(2)若不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廈門模擬)已知圓C:(x+l)2+y2=1,過點(diǎn)P(-3,0)作圓的兩條切線,切點(diǎn)為A,B,則四邊形PACB的面積等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:2x-y+1=0,求:
(1)過點(diǎn)P(3,1)且與直線l垂直的直線方程;(寫成一般式)
(2)點(diǎn)P(3,1)關(guān)于直線l的對(duì)稱點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省廈門市高三5月適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知圓C:(x+l)2+y2=1,過點(diǎn)P(-3,0)作圓的兩條切線,切點(diǎn)為A,B,則四邊形PACB的面積等于( )
A.
B.
C.2
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案