已知:一個(gè)圓錐的底面半徑為R=2,高為H=4,在其中有一個(gè)高為x的內(nèi)接圓柱.
(1)寫(xiě)出圓柱的側(cè)面積關(guān)于x的函數(shù);
(2)x為何值時(shí),圓柱的側(cè)面積最大.
【答案】分析:(1)畫(huà)出圓錐的軸截面,將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題,然后根據(jù)相似三角形的性質(zhì)和比例的性質(zhì),得出內(nèi)接圓柱底面半徑r與x關(guān)系式,利用由圓柱的側(cè)面積公式,得到函數(shù)解析式,
(2)根據(jù)二次函數(shù)的性質(zhì)易得到其最大值,及對(duì)應(yīng)的x的值.
解答:解:(1)設(shè)內(nèi)接圓柱底面半徑為r,
S圓柱側(cè)=2πrx①,∵=
②代入①得S圓柱側(cè)=2πx=π(-x2+4x)(0<x<4)
(2)S圓柱側(cè)=-π(x-2)2+4π,所以x=2時(shí),圓柱的側(cè)面積最大,最大為4π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是圓錐的幾何特征及圓錐及圓柱的側(cè)面積公式,將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題是解答立體幾何題最常用的思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一個(gè)圓錐的底面半徑為R,高為h,在其中有一個(gè)高為x的內(nèi)接圓柱(其中R,h均為常數(shù)).
(1)當(dāng)x=
23
h時(shí),求內(nèi)接圓柱上方的圓錐的體積V;
(2)當(dāng)x為何值時(shí),這個(gè)內(nèi)接圓柱的側(cè)面積最大?并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:一個(gè)圓錐的底面半徑為R=2,高為H=4,在其中有一個(gè)高為x的內(nèi)接圓柱.
(1)寫(xiě)出圓柱的側(cè)面積關(guān)于x的函數(shù);
(2)x為何值時(shí),圓柱的側(cè)面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:一個(gè)圓錐的底面半徑為R,高為H,在其中有一個(gè)高為x的內(nèi)接圓柱.

   (1)求圓柱的側(cè)面積;

   (2)x為何值時(shí),圓柱的側(cè)面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 
(14分)已知:一個(gè)圓錐的底面半徑為R,高為H,在其中有一個(gè)高為x的內(nèi)接圓柱.

   (1)求圓柱的側(cè)面積;

   (2)x為何值時(shí),圓柱的側(cè)面積最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案