己知橢圓的離心率為,是橢圓的左右頂點(diǎn),是橢圓的上下頂點(diǎn),四邊形的面積為.
(1)求橢圓的方程;
(2)圓過兩點(diǎn).當(dāng)圓心與原點(diǎn)的距離最小時,求圓的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點(diǎn)為,過焦點(diǎn)且不平行于軸的動直線交拋物線于,兩點(diǎn),拋物線在、兩點(diǎn)處的切線交于點(diǎn).
(Ⅰ)求證:,,三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,線段與y軸的交點(diǎn)M滿足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以為直徑的圓,直線:與圓相切,并與橢圓交于不同的兩點(diǎn),當(dāng),且滿足時,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)一動點(diǎn)到點(diǎn)的距離與點(diǎn)到軸的距離的差等于1.(I)求動點(diǎn)的軌跡的方程;(II)過點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的兩個焦點(diǎn)為的曲線C上.(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的動直線交拋物線于點(diǎn),且.
(1)求拋物線的方程;
(2)若(為坐標(biāo)原點(diǎn)),且點(diǎn)在拋物線上,求直線傾斜角;
(3)若點(diǎn)是拋物線的準(zhǔn)線上的一點(diǎn),直線的斜率分別為.求證:
當(dāng)為定值時,也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點(diǎn),求線段中點(diǎn)的軌跡方程;
(3)過原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過點(diǎn)且方向向量為的直線交橢圓于兩點(diǎn),交軸于點(diǎn),且.
(1)求直線的方程;
(2)求橢圓長軸長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com