【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】【2018江西南康中學、于都中學上學期第四次聯(lián)考】橢圓上動點到兩個焦點的距離之和為4,且到右焦點距離的最大值為.
(I)求橢圓的方程;
(II)設點為橢圓的上頂點,若直線與橢圓交于兩點(不是上下頂點).試問:直線是否經(jīng)過某一定點,若是,求出該定點的坐標;若不是,請說明理由;
(III)在(II)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓: 的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點的圓恰好與直線: 相切,求橢圓的方程;
(III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面為直角梯形, 平面,側面是等腰直角三角形, , ,點是棱的中點.
(1)證明:平面平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 為橢圓 上任一點,, 為橢圓的焦點,,離心率為 .
(1)求橢圓的標準方程;
(2)直線 經(jīng)過點 ,且與橢圓交于 , 兩點,若直線 ,, 的斜率依次成等比數(shù)列,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為、的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.
(1)求包裝盒的容積關于的函數(shù)表達式,并求函數(shù)的定義域;
(2)當為多少時,包裝盒的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總人數(shù).現(xiàn)對某校高三年級240名學生進行一次測試,共5道客觀題,測試前根據(jù)對學生的了解,預估了每道題的難度,如表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了20名學生的答題數(shù)據(jù)進行統(tǒng)計,結果如表:
(Ⅰ)根據(jù)題中數(shù)據(jù),估計中240名學生中第5題的實測答對人數(shù);
(Ⅱ)從抽樣的20名學生中隨機抽取2名學生,記這2名學生中第5題答對的人數(shù)為,求的分布列和數(shù)學期望;
(Ⅲ)試題的預估難度和實測難度之間會有偏差.設為第題的實測難度,請用和設計一個統(tǒng)計量,并制定一個標準來判斷本次測試對難度的預估是否合理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,等腰的底邊,高,點是線段上異于點的動點,點在邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.
(1)求的表達式;(2)當為何值時, 取得最大,并求最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com