【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.

【答案】(2) ;(2) ,或.

【解析】試題分析:(1)當命題P為真命題時,轉化為求上的最小值,繼而求出m的范圍;2先求出當命題q為真命題時m的范圍,再由已知條件得出p,q一個為真命題,一個為假命題,再分兩種情況分別求出m的范圍,最后取并集即可求出m的范圍。

試題解析:(1),∵,∴,故命題為真命題時,

(2)若命題為真命題,則,所以,

因為命題為真命題,則至少有一個真命題, 為假命題,

至少有一個假命題,所以一個為真命題,一個為假命題.

當命題為真命題,命題為假命題時, ,則,或;

當命題為假命題,命題為真命題時, , 舍去.

綜上, ,或.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2018江西南康中學、于都中學上學期第四次聯(lián)考橢圓上動點到兩個焦點的距離之和為4,且到右焦點距離的最大值為

I)求橢圓的方程;

II)設點為橢圓的上頂點,若直線與橢圓交于兩點不是上下頂點).試問:直線是否經(jīng)過某一定點,若是,求出該定點的坐標;若不是,請說明理由;

III)在(II)的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求的最大值;

(Ⅱ)若,判斷的單調性;

(Ⅲ)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且.

Ⅰ)求橢圓的離心率;

Ⅱ)若過、三點的圓恰好與直線 相切,求橢圓的方程;

III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面為直角梯形, 平面,側面是等腰直角三角形, , ,點是棱的中點.

(1)證明:平面平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 為橢圓 上任一點,, 為橢圓的焦點,,離心率為

(1)求橢圓的標準方程;

(2)直線 經(jīng)過點 ,且與橢圓交于 , 兩點,若直線 ,, 的斜率依次成等比數(shù)列,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.

(1)求包裝盒的容積關于的函數(shù)表達式,并求函數(shù)的定義域;

(2)為多少時,包裝盒的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總人數(shù).現(xiàn)對某校高三年級240名學生進行一次測試,共5道客觀題,測試前根據(jù)對學生的了解,預估了每道題的難度,如表所示:

題號

1

2

3

4

5

考前預估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機抽取了20名學生的答題數(shù)據(jù)進行統(tǒng)計,結果如表:

(Ⅰ)根據(jù)題中數(shù)據(jù),估計中240名學生中第5題的實測答對人數(shù);

(Ⅱ)從抽樣的20名學生中隨機抽取2名學生,記這2名學生中第5題答對的人數(shù)為,求的分布列和數(shù)學期望;

(Ⅲ)試題的預估難度和實測難度之間會有偏差.設為第題的實測難度,請用設計一個統(tǒng)計量,并制定一個標準來判斷本次測試對難度的預估是否合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,等腰的底邊,高,點是線段上異于點的動點,點邊上,且,現(xiàn)沿將△折起到△的位置,使,記 表示四棱錐的體積.

(1)的表達式;(2)為何值時, 取得最大,并求最大值。

查看答案和解析>>

同步練習冊答案