今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是
1
2
.并記需要比賽的場(chǎng)數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學(xué)期望.
(Ⅰ)依題意可知,X的可能取值最小為4.
當(dāng)X=4時(shí),整個(gè)比賽只需比賽4場(chǎng)即結(jié)束,這意味著甲連勝4場(chǎng),或乙連勝4場(chǎng),
可得P(X=4)=2×(
1
2
)4×(
1
2
)0=
1
8

當(dāng)X=5時(shí),需要比賽5場(chǎng)整個(gè)比賽結(jié)束,意味著甲在第5場(chǎng)獲勝,前4場(chǎng)中有3場(chǎng)獲勝,或者乙在第5場(chǎng)獲勝,前4場(chǎng)中有3場(chǎng)獲勝.
可得P(X=5)=2×[
C34
×(
1
2
)
3
×
1
2
1
2
=
1
4

所以P(X>5)=1-
1
8
-
1
4
=
5
8
.              
(Ⅱ)X的可能取值為4,5,6,7,可得P(X=6)=2×[
C35
×(
1
2
)
3
×(
1
2
)
2
1
2
=
5
16
;P(X=7)=2×[
C36
×(
1
2
)
3
×(
1
2
)
3
1
2
=
5
16

所以X的分布列為:
X 4 5 6 7
P
1
8
1
4
5
16
5
16
X的數(shù)學(xué)期望為:EX=4×
1
8
+5×
1
4
+6×
5
16
+7×
5
16
=
93
16
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是
12
.并記需要比賽的場(chǎng)數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省佛山一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(14分)今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省2012屆高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(14分)今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為ξ.

 

(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州市江陵實(shí)驗(yàn)高中高二(上)綜合測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案