設A、B、C是三個集合,則“A=B”是“A∩B=B∩C”的

[  ]

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點,且1是其中一個零點.
(Ⅰ)求b的值;
(Ⅱ)求f(2)的取值范圍;
(Ⅲ)設g(x)=x-1,且f(x)>g(x)的解集為(-∞,1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與變換

設矩陣(其中a>0,b>0).

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;

(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為

(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;

(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

(3)(本小題滿分7分)選修4-5:不等式選講

設不等式的解集為M.

(I)求集合M;

(II)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省福州市高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點,且1是其中一個零點.
(Ⅰ)求b的值;
(Ⅱ)求f(2)的取值范圍;
(Ⅲ)設g(x)=x-1,且f(x)>g(x)的解集為(-∞,1),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案