在平行四邊形ABCD中,
AB
BD
=0,2
AB
2
+
BD
2
-4=0
,若將其沿BD折起,使平面ABD⊥平面BDC則三棱錐A-BCD的外接球的表面積為( 。
分析:由已知中
AB
BD
=0
,可得AB⊥BD,沿BD折起后,由平面ABD⊥平面BDC,可得三棱錐A-BCD的外接球的直徑為AC,進(jìn)而根據(jù)2
AB
2
+
BD
2
-4=0
,求出三棱錐A-BCD的外接球的半徑,可得三棱錐A-BCD的外接球的表面積.
解答:解:平行四邊形ABCD中,
AB
BD
=0

∴AB⊥BD,
沿BD折成直二面角A-BD-C,
∵平面ABD⊥平面BDC
三棱錐A-BCD的外接球的直徑為AC,
∴AC2=AB2+BD2+CD2=2AB2+BD2=4
∴外接球的半徑為1,
故表面積是4π.
故選B
點(diǎn)評:本題考查的知識點(diǎn)是球內(nèi)接多面體,平面向量數(shù)量積的運(yùn)算,其中根據(jù)已知求出三棱錐A-BCD的外接球的半徑是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段CD的中點(diǎn),若
AC
=
a
,
BD
=
b
,則
AE
=
 
.(用
a
、
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)在平行四邊形ABCD中,
AE
=
1
3
AB
,
AF
=
1
4
AD
,CE與BF相交于G點(diǎn).若
AB
=
a
,
AD
=
b
,則
AG
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,邊AB所在直線方程為2x-y-3=0,點(diǎn)C(3,0).
(1)求直線CD的方程;
(2)求AB邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,點(diǎn)E為CD中點(diǎn),
AB
=
a
,
AD
=
b
,則
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)在平行四邊形ABCD中,若
AB
=(1,3)
,
AC
=(2,5)
,則向量
AD
的坐標(biāo)為
(1,2)
(1,2)

查看答案和解析>>

同步練習(xí)冊答案