12.某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī),五名男生的成績(jī)分別為86,94,88,92,90,五名女生的成績(jī)分別為88,93,93,88,93.下列說法一定正確的是( 。
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績(jī)的方差大于這五名女生成績(jī)的方差
D.該班級(jí)男生成績(jī)的平均數(shù)小于該班女生成績(jī)的平均數(shù)

分析 若抽樣方法是分層抽樣,男生、女生分別抽取6人、4人,由題目看不出是系統(tǒng)抽樣,求出這五名男生成績(jī)的平均數(shù)、方差和這五名女生成績(jī)的平均數(shù)、方差,由此能求出結(jié)果.

解答 解:由題目看不出是抽樣方法是分層抽樣,故A錯(cuò);
由題目看不出是系統(tǒng)抽樣,故A錯(cuò);
這五名男生成績(jī)的平均數(shù)$\overline{{x}_{男}}$=$\frac{1}{5}$(86+94+88+92+90)=90,
這五名女生成績(jī)的平均數(shù)$\overline{{x}_{女}}$=$\frac{1}{5}$(88+93+93+88+93)=91,
故這五名男生成績(jī)的方差為${{S}_{男}}^{2}$=$\frac{1}{5}$(42+42+22+22+02)=8,
這五名女生成績(jī)的方差為${{S}_{女}}^{2}$=$\frac{1}{5}$(32+22+22+32+22)=6,
故C正確,D錯(cuò).
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真題,注意分層抽樣、系統(tǒng)抽樣、平均數(shù)、方差的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一塊邊長(zhǎng)為10cm的正方形鐵塊按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器.
(1)試把容器的容積V表示為x的函數(shù)
(2)若x=6,求圖2的主視圖的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若圓錐的側(cè)面展開圖是半徑為2,中心角為$\frac{5π}{3}$的扇形,則由它的兩條母線所確定的截面面積的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)不等式組$\left\{\begin{array}{l}{x≥0}\\{x+2y≥4}\\{2x+y≤4}\end{array}\right.$所表示的平面區(qū)域?yàn)镈,則區(qū)域D的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)是定義在R上不恒為零的函數(shù),對(duì)于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.?dāng)?shù)列{an}滿足an=f(3n)(n∈N+),且a1=3,則數(shù)列的通項(xiàng)公式為an=n•3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a∈[-2,2],不等式x2+(a-4)x+4-2a>0恒成立,則x的取值范圍為(-∞,0)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y=1,y=x0B.y=$\sqrt{x-1}$•$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$
C.y=x,y=$\root{3}{{x}^{3}}$D.y=|x|,t=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a1=8,且a4-1,a5,3a4+1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及Sn
(2)若bn=log2(an•an+1),cn=$\frac{1}{_{n}•_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等比數(shù)列{αn}中,α456=27,則α5=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案