某曲線極坐標方程為p=8cosθ,則它的直角坐標方程為   
【答案】分析:先將原極坐標方程兩邊同乘以ρ后化成直角坐標方程即可.
解答:解:將原極坐標方程為p=8cosθ,化成:
p2=8ρcosθ,其直角坐標方程為:
∴x2+y2=8x,
故填:x2+y2=8x.
點評:本題考查點的極坐標和直角坐標的互化,能進行極坐標和直角坐標的互化.利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2
;
(II)求M6
ξ
的值.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某曲線極坐標方程為p=8cosθ,則它的直角坐標方程為
x2+y2=8x
x2+y2=8x

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建廈門雙十中學高三考前熱身理數(shù)試卷 題型:解答題

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-2:矩陣與變換

已知矩陣,向量

    (I)求矩陣的特征值、和特征向量;

(II)求的值.

 

 

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為

(Ⅰ)求直線l的直角坐標方程;

(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.

 

 

(3)(本小題滿分7分)選修4-5:不等式選講

(Ⅰ)已知:a、b、;www.7caiedu.cn   

(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

 

 

 

查看答案和解析>>

同步練習冊答案