【題目】設(shè)函數(shù),其中
.
(Ⅰ)當(dāng)時,求曲線
在
處的切線方程;
(Ⅱ)討論的極值點(diǎn)的個數(shù);
(Ⅲ)若在y軸右側(cè)的圖象都不在x軸下方,求實(shí)數(shù)a的取值范圍.
【答案】(Ⅰ)(Ⅱ)答案不唯一,具體見解析(Ⅲ)
【解析】
(Ⅰ)當(dāng)時,求出函數(shù)
的導(dǎo)函數(shù),再求出在
處的切線的斜率,最后利用點(diǎn)斜式求出切線方程;
(Ⅱ)求函數(shù)的導(dǎo)函數(shù)
,通過換元法,導(dǎo)函數(shù)
的解析式是二次項系數(shù)不確定的多項式函數(shù),根據(jù)二次項系數(shù)等于零、大于零、小于零,結(jié)合一元二次方程根的判別式,分類討論求出函數(shù)
的極值點(diǎn)的個數(shù);
(Ⅲ)由題設(shè)可知,
.因此有當(dāng)
時,
,
根據(jù)(Ⅱ)可知函數(shù)的單調(diào)性進(jìn)行分類討論;
①當(dāng)時,利用函數(shù)
的單調(diào)性可以證明出
成立.
②當(dāng)時,利用根與系數(shù)關(guān)系,和函數(shù)的單調(diào)性可以得到
.
③當(dāng)時,利用放縮法、構(gòu)造新函數(shù),可以證明當(dāng)
時,
不恒成立,最后確定a的取值范圍.
解:(Ⅰ)當(dāng)時,
,
,
所以,
.
曲線在
處的切線方程為
,即
.
(Ⅱ)由已知可得,
設(shè),則
,記
,
(1)時,
,函數(shù)
在R上為增函數(shù),沒有極值點(diǎn).
(2)當(dāng)時,判別式
,
①若時,
,
,函數(shù)
在R上為增函數(shù),沒有極值點(diǎn).
②若時,
,由
,拋物線
的對稱軸為
,
可知的零點(diǎn)均為正數(shù).
不妨設(shè)的兩個不等正實(shí)數(shù)根為
,且
,
則,
所以當(dāng),
,
單調(diào)遞增,
當(dāng),
,
單調(diào)遞減,
當(dāng),
,
單調(diào)遞增,
此時函數(shù)有兩個極值點(diǎn).
(3)若時,由
,
可知的兩個不相等的實(shí)數(shù)根
,且
,
當(dāng),
,
單調(diào)遞增,
當(dāng),
,
單調(diào)遞減,
此時函數(shù)只有一個極值點(diǎn).
綜上:當(dāng)時
無極值點(diǎn);
當(dāng)時
有一個極值點(diǎn);
當(dāng)時
有兩個極值點(diǎn).
(Ⅲ)由題設(shè)可知,
.
時,
,
由(Ⅱ)知:
①當(dāng)時,函數(shù)
在R上為增函數(shù),
,所以
成立;
②當(dāng)時,
,
,所以
,
當(dāng)時
單調(diào)遞增,又
,
所以,,
等價于
,即
.
所以只需,即
.
所以,當(dāng)時,也滿足
,
;
③當(dāng)時,
,
考察函數(shù),
顯然存在,使得
,
即存在,使得
,不滿足
,
綜上所述,a的取值范圍是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓上任意一點(diǎn)到其兩個焦點(diǎn)
,
的距離之和等于
,焦距為2c,圓
,
,
是橢圓的左、右頂點(diǎn),AB是圓O的任意一條直徑,四邊形
面積的最大值為
.
(1)求橢圓C的方程;
(2)如圖,若直線與圓O相切,且與橢圓相交于M,N兩點(diǎn),直線
與
平行且與橢圓相切于P(O,P兩點(diǎn)位于
的同側(cè)),求直線
,
距離d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,點(diǎn)M,N分別為線段
,
的中點(diǎn),
,
,
.
(1)證明:;
(2)求平面與平面
所成銳二面角的大�。�
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn),
,線段
為
的直徑
(1)求的方程;
(2)若經(jīng)過點(diǎn)的直線
被
截得的弦長為8,求此直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有四個關(guān)于命題的判斷,其中正確的是()
A.命題“,
”是假命題
B.命題“若,則
或
”是真命題
C.命題“,
”的否定是“
,
”
D.命題“在中,若
,則
是鈍角三角形”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為平行四邊形,
,
.且
底面
.
(1)證明:平面平面
;
(2)若為
的中點(diǎn),且
,求二面角
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種人壽保險規(guī)定,投保人沒活過65歲,保險公司要賠償10萬元;若投保人活過65歲,則保險公司不賠償,但要給投保人一次性支付4萬元已知購買此種人壽保險的每個投保人能活過65歲的概率都為,隨機(jī)抽取4個投保人,設(shè)其中活過65歲的人數(shù)為
,保險公司支出給這4人的總金額為
萬元(參考數(shù)據(jù):
)
(1)指出X服從的分布并寫出與
的關(guān)系;
(2)求.(結(jié)果保留3位小數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com