【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)內(nèi)有極值,試比較的大小,并證明你的結(jié)論.

【答案】1)當(dāng)時(shí),在上是增函數(shù),在上是增函數(shù);當(dāng)時(shí),在上是增函數(shù),在上是增函數(shù),在上是減函數(shù),在上是減函數(shù); 2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.見解析

【解析】

1)求導(dǎo)得到,討論,三種情況計(jì)算得到答案.

2)根據(jù)題意有一變號(hào)零點(diǎn)在區(qū)間上,得到,構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性得到答案.

1)定義域?yàn)?/span>

設(shè)

當(dāng)時(shí),,此時(shí),從而恒成立,

故函數(shù)上是增函數(shù),在上是增函數(shù);

當(dāng)時(shí),函數(shù)圖象開口向上,對(duì)稱軸,又

所以此時(shí),從而恒成立,

故函數(shù)上是增函數(shù),在上是增函數(shù);

當(dāng)時(shí),,設(shè)有兩個(gè)不同的實(shí)根,

共中

,則

,得;令,得,

故函數(shù)上是增函數(shù),在上是增函數(shù),在上是減函數(shù),在上是減函數(shù).

綜上,當(dāng)時(shí),函數(shù)上是增函數(shù),在上是增函數(shù);

當(dāng)時(shí),函數(shù)上是增函數(shù),在上是增函數(shù),在上是減函數(shù),在上是減函數(shù).

2)要使上有極值,由(1)知,①

有一變號(hào)零點(diǎn)在區(qū)間上,不妨設(shè)

又因?yàn)?/span>,∴,又,

∴只需,即,∴,②

聯(lián)立①②可得:.

從而均為正數(shù).

要比較的大小,同取自然底數(shù)的對(duì)數(shù),

即比較的大小,再轉(zhuǎn)化為比較的大小.

構(gòu)造函數(shù),則

再設(shè),則,從而上單調(diào)遞減,

此時(shí),故上恒成立,則上單調(diào)遞減.

綜上所述,當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,點(diǎn),過(guò)的直線與圓交于點(diǎn),過(guò)做直線平行于點(diǎn)

1)求點(diǎn)的軌跡的方程;

2)過(guò)的直線與交于、兩點(diǎn),若線段的中點(diǎn)為,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩陶瓷廠生產(chǎn)規(guī)格為的矩形瓷磚(長(zhǎng)和寬都約為) ,根據(jù)產(chǎn)品出廠檢測(cè)結(jié)果,每片瓷磚質(zhì)量(單位:)之間的稱為正品,其余的作為廢品直接回爐處理.正品瓷

磚按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分為優(yōu)等、一級(jí)、合格三個(gè)標(biāo)準(zhǔn),主要按照每片瓷磚的尺寸誤差加以劃分,每片價(jià)格分別為元、元、.若規(guī)定每片正品瓷磚的尺寸誤差計(jì)算方式為,設(shè)矩形瓷磚的長(zhǎng)與寬分別為(單位:) ,則尺寸誤差,優(yōu)等瓷磚的尺寸誤差范圍是一級(jí)瓷磚的尺寸誤差范圍是,合格瓷磚的尺寸誤差范圍是.現(xiàn)分別從甲、乙兩廠生產(chǎn)的正品瓷磚中隨機(jī)抽取片瓷磚,相應(yīng)的尺寸誤差組成的樣本數(shù)據(jù)如下:

(甲廠產(chǎn)品的尺寸誤差頻數(shù)表)

尺寸誤差

頻數(shù)

(乙廠產(chǎn)品的尺寸誤差柱狀圖)

1)根據(jù)樣本數(shù)據(jù)分別計(jì)算甲、乙兩廠生產(chǎn)的正品瓷磚的尺寸誤差的平均值;

2)若用這個(gè)樣本的頻率分布估計(jì)總體分布,求乙廠所生產(chǎn)的正品瓷磚的平均價(jià)格;

3)現(xiàn)用分層抽樣的方法從甲廠生產(chǎn)的片樣本瓷磚中隨機(jī)抽取片,再?gòu)某槿〉?/span>片瓷磚中的一級(jí)瓷磚與合格瓷磚中隨機(jī)選.片進(jìn)一步分析其平整度,求這片瓷磚的價(jià)格之和大于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過(guò)點(diǎn),傾斜角為.

1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式;

2)已知直線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面平面PCD,底面ABCD為梯形,,,MPD的中點(diǎn),過(guò)AB,M的平面與PC交于N.,,.

1)求證:NPC中點(diǎn);

2)求證:平面PCD;

3TPB中點(diǎn),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.

1)求的方程;

2)直線,兩點(diǎn),且.已知上存在點(diǎn),使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)設(shè)函數(shù),求函數(shù)的極值;

2)若上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=x2lnx-a(x2-1)(a∈R),若≥0在x∈(0,1] 時(shí)恒成立,則實(shí)數(shù)a的取值范圍是

A. ,+ ∞) B. [,+∞) C. [2,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是(  )

A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案