如圖,在平行四邊形ABCD中,邊AB所在直線方程為2x-y-2=0,點(diǎn)C(2,0).
(1)求直線CD的方程;
(2)求AB邊上的高CE所在直線的方程.
分析:(1)利用四邊形ABCD為平行四邊形,邊AB所在直線方程為2x-y-2=0,確定CD的斜率,進(jìn)而我們可以求出直線CD的方程;
(2)求出AB邊上的高CE的斜率,從而可以求出AB邊上的高CE所在直線的方程.
解答:解:(1)∵四邊形ABCD為平行四邊形,∴AB∥CD.---(1分)
∴kCD=kAB=2.-----(3分)
∵點(diǎn)C(2,0)
∴直線CD的方程為y=2(x-2),---------(5分)
即2x-y-4=0.----------(6分)
(2)∵CE⊥AB,∴kCE=-
1
kAB
=-
1
2
.------(8分)
∵點(diǎn)C(2,0)
∴直線CE的方程為y=-
1
2
(x-2)
--------(11分)
即x+2y-2=0
點(diǎn)評(píng):本題考查直線方程,考查兩直線的平行與垂直,解題的關(guān)鍵在于確定所求直線的斜率,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,下列結(jié)論中錯(cuò)誤的是( 。
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
AB
-
AD
=
BD
D、
AD
+
CB
=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD,
AD
=a
,
AB
=b
,M為AB的中點(diǎn),點(diǎn)N在DB上,且
DN
=t
NB

(1)當(dāng)t=2時(shí),證明:M、N、C三點(diǎn)共線;
(2)若M、N、C三點(diǎn)共線,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,
AB
=
a
AD
=
b
,
AN
=3
NC
,則
BN
=
-
1
4
a
+
3
4
b
-
1
4
a
+
3
4
b
(用
a
,
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,若
OA
=
a
,
OB
=
b
則下列各表述是正確的為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形OABC中,點(diǎn)O是原點(diǎn),點(diǎn)A和點(diǎn)C的坐標(biāo)分別是(3,0)、(1,3),點(diǎn)D是線段AB上的中點(diǎn).
(1)求AB所在直線的一般式方程;
(2)求直線CD與直線AB所成夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案