如圖是函數(shù)y=Asin(ωx+φ)的圖象的一段,它的解析式為( 。
分析:通過函數(shù)的圖象,求出A,求出周期,得到ω,函數(shù)經(jīng)過(-
π
12
2
3
),求出φ,得到函數(shù)的解析式.
解答:解:由題意與函數(shù)的圖象可知:A=
2
3
,T=2×(-
π
12
-
12
)=π,∴ω=2,
因?yàn)楹瘮?shù)圖象經(jīng)過(-
π
12
,
2
3
)
,
所以
2
3
=
2
3
sin[2×(-
π
12
)+φ]
=
2
3
sin(φ-
π
6
)
,
所以-
π
6
+φ=
π
2

解得φ=
3
,
所以函數(shù)的解析式為:y=
2
3
sin(2x+
3
)

故選D.
點(diǎn)評(píng):本題考查函數(shù)的圖象的應(yīng)用,函數(shù)解析式的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤
π
2
)圖象的一部分.為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( 。
A、向左平移
π
3
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
3
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
C、向左平移
π
6
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
倍,縱坐標(biāo)不變
D、向左平移
π
6
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個(gè)周期內(nèi)的圖象,M、N分別是最大、最小值點(diǎn),且
OM
ON
,則A•ω的值為(  )
A、
π
6
B、
2
π
6
C、
5
π
4
D、
7
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個(gè)周期內(nèi)的圖象,M、N分別是其最高點(diǎn)、最低點(diǎn),MC⊥x軸,且矩形MBNC的面積為
7
π
12
,則A•ω的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=Asin(ωx+?)(x∈R,A>0,ω>0,0<?<
π
2
)在區(qū)間[-
π
6
,
6
]
上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上的所有的點(diǎn)(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案