已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.
(Ⅰ)若e=
3
2
,求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)y=kx與橢圓相交于A,B兩點(diǎn),若
AF2
BF2
=0
,且
2
2
<e≤
3
2
,求k的取值范圍.
(I)由題得:c=3,
c
a
=
3
2
?a=2
3
,b=
3

故橢圓方程為
x2
12
+
y2
3
=1
;
(II)由
x2
12
+
y2
3
=1
y=kx
得(b2+a2k2)x2-a2b2=0,
設(shè)A(x1,y1),B(x2,y2),∴x1+x2=0,x1x2=
-a2b2
b2+a2k2
,又
AF2
=(3-x1,-y1),
BF2
=(3-x2,-y2),∴
AF2
BF2
=(1+k2)x1x2+9=0,即
-a2(a2-9)(1+k2)
a2k2+(a2-9)
+9=0
,
∴k2=
a4-18a2+81
-a4+18a2
=-1-
81
-a4+18a2
,
2
2
<e≤
3
2
,
∴2
3
≤a≤3
2
,12≤a2≤18,
∴k2
1
8
,即 k∈(-∞,-
2
4
]∪[
2
4
,+∞).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線(xiàn)l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線(xiàn)l恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線(xiàn)l交橢圓于C、D兩點(diǎn),記直線(xiàn)AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線(xiàn)l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過(guò)點(diǎn)M(2,1),直線(xiàn)y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過(guò)右焦點(diǎn)做垂直于x軸的直線(xiàn)與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線(xiàn)l:y=1,過(guò)M任作一條不與y軸重合的直線(xiàn)與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線(xiàn)l上的射影,AB的中垂線(xiàn)與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過(guò)F作y軸的平行線(xiàn)交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案