分析 由題意利用復(fù)合函數(shù)的單調(diào)性可得y=-x2+ax在[$\frac{1}{2}$,1]上單調(diào)遞增,可得 $\frac{a}{2}$≥1,由此求得a的范圍.
解答 解:∵函數(shù)y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上單調(diào)遞增,∴y=-x2+ax在[$\frac{1}{2}$,1]上單調(diào)遞增,
∴$\frac{a}{2}$≥1,即a≥2,
故答案為:[2,+∞).
點(diǎn)評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、指數(shù)函數(shù)的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 5 | C. | 11 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2 | 5 | 3 | 1 | 4 |
f(x) | 1 | 2 | 3 | 4 | 5 |
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com