當(dāng)曲線y=1+
4-x2
與直線kx-y-2k+4=0有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。
A.(0,
5
12
)
B.(
1
3
,
3
4
]
C.(
5
12
3
4
]
D.(
5
12
,+∞)
化簡曲線y=1+
4-x2
,得x2+(y-1)2=4(y≥1)
∴曲線表示以C(0,1)為圓心,半徑r=2的圓的上半圓.
∵直線kx-y-2k+4=0可化為y-4=k(x-2),
∴直線經(jīng)過定點(diǎn)A(2,4)且斜率為k.
又∵半圓y=1+
4-x2
與直線kx-y-2k+4=0有兩個(gè)相異的交點(diǎn),
∴設(shè)直線與半圓的切線為AD,半圓的左端點(diǎn)為B(-2,1),
當(dāng)直線的斜率k大于AD的斜率且小于或等于AB的斜率時(shí),
直線與半圓有兩個(gè)相異的交點(diǎn).
由點(diǎn)到直線的距離公式,當(dāng)直線與半圓相切時(shí)滿足
|-1-2k+4|
k2+1
=2
,
解之得k=
5
12
,即kAD=
5
12

又∵直線AB的斜率kAB=
4-1
2+2
=
3
4
,∴直線的斜率k的范圍為k∈(
5
12
,
3
4
]

故選:C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)P(2,0)引圓x2+y2-2x+6y+9=0的切線,切點(diǎn)為A、B,則直線AB的方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)P(2,3)向圓x2+y2=1作兩條切線PA、PB,則弦AB所在直線的方程為( 。
A.2x-3y-1=0B.2x+3y-1=0C.3x+2y-1=0D.3x-2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若⊙P:(x-2)2+(y-2)2=18上恰好有三個(gè)不同的點(diǎn)到直線l:ax+by=0的距離為2
2
,則l的傾斜角為( 。
A.
π
12
π
6
B.
12
π
6
C.
π
12
π
4
D.
12
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(x,y)是曲線y=
4-x2
上的動(dòng)點(diǎn),則點(diǎn)P到直線y=x+3的距離的最大值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+y2+2x-4y+3=0
(1)若圓Q的圓心在直線y=x+3上,半徑為
2
,且與圓C外切,求圓Q的方程;
(2)若圓C的切線在x軸,y軸上的截距相等,求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:x2+y2-2x+4y-4=0.
(1)寫出圓C的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過原點(diǎn).若存在,求出直線m的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l過點(diǎn)P(0,2),斜率為k,圓Q:x2+y2-12x+32=0,若直線l和圓Q交于兩個(gè)不同的點(diǎn)A,B,問是否存在常數(shù)k,使得
OA
+
OB
PQ
共線?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=kx+1被圓x2+(y-1)2=2所截得的弦AB的長等于( 。
A.2B.4C.
2
D.2
2

查看答案和解析>>

同步練習(xí)冊答案