分析:(Ⅰ)求最值就是先求導(dǎo),然后判斷單調(diào)性,繼而求得最小值.
(Ⅱ)(ⅰ)公共點的個數(shù)等于h(x)=e
x-1-x-
x
2零點的個數(shù).
(ⅱ)y=f(x)的圖象恒在y=g(x)的圖象的上方,令h(x)=f(x)-g(x)即h(x)=e
x-1-x-ax
2>0恒成立.再求參數(shù)的取值范圍.
解答:
解:(Ⅰ)求導(dǎo)數(shù),得f′(x)=e
x-1.
令f′(x)=0,解得x=0.
當(dāng)x<0時,f′(x)<0,∴f(x)在(-∞,0)上是減函數(shù);
當(dāng)x>0時,f′(x)>0,∴f(x)在(0,+∞)上是增函數(shù).
故f(x)在x=0處取得最小值f(0)=0.
(Ⅱ)設(shè)h(x)=f(x)-g(x)=e
x-1-x-ax
2,則h′(x)=e
x-1-2ax.
(。┊(dāng)a=
時,y=e
x-1-x的圖象與y=ax
2的圖象公共點的個數(shù)等于h(x)=e
x-1-x-
x
2零點的個數(shù).
∵h(yuǎn)(0)=1-1=0,
∴h(x)存在零點x=0.
由(Ⅰ),知e
x≥1+x,
∴h′(x)=e
x-1-x≥0,
∴h(x)在R上是增函數(shù),
∴h(x)在R上有唯一的零點.
故當(dāng)a=
時,y=f(x)的圖象與y=g(x)的圖象有唯一的公共點.
(ⅱ)當(dāng)x>0時,y=f(x)的圖象恒在y=g(x)的圖象的上方
?當(dāng)x>0時,f(x)>g(x),即h(x)=e
x-1-x-ax
2>0恒成立.
由(Ⅰ),知e
x≥1+x(當(dāng)且僅當(dāng)x=0時等號成立),
故當(dāng)x>0時,e
x>1+x.
h′(x)=e
x-1-2ax>1+x-1-2ax=(1-2a)x,
從而當(dāng)1-2a≥0,即a≤
時,h′(x)≥0(x>0),
∴h(x)在(0,+∞)上是增函數(shù),又h(0)=0,
于是當(dāng)x>0時,h(x)>0.
由e
x>1+x(x≠0),可得e
-x>1-x(x≠0),
從而當(dāng)a>
時,h′(x)=e
x-1-2ax<e
x-1+2a(e
-x-1)=e
-x(e
x-1)(e
x-2a),
故當(dāng)x∈(0,ln2a)時,h′(x)<0,
此時h(x)在(0,ln2a)上是減函數(shù),又h(0)=0,
于是當(dāng)x∈(0,ln2a)時,h(x)<0.
綜上可知,實數(shù)a的取值范圍為(-∞,
].