【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若不等式在時恒成立,求實數(shù)的取值范圍;
(3)當時,證明: .
【答案】(1)見解析;(2);(3)見解析
【解析】分析:(1)求出的導(dǎo)函數(shù),由得增區(qū)間,由得減區(qū)間,注意在解不等式時要按的值分類討論;
(2)由(1)的結(jié)論知當時,,題中不等式成立,而當時,題中不等式不恒成立;
(3)時,由(2)知上有,從而,令,然后所有不等式相加可證.
詳解: (1)∵y=f(x)-g(x)=ln(ax+1)-,
y′=-=,
當a≥1時,y′≥0,所以函數(shù)y=f(x)-g(x)是[0,+∞)上的增函數(shù);
當0<a<1時,由y′>0得x>2,所以函數(shù)y=f(x)-g(x)在上是單調(diào)遞增函數(shù),函數(shù)y=f(x)-g(x)在上是單調(diào)遞減函數(shù);
(2)當a≥1時,函數(shù)y=f(x)-g(x)是[0,+∞)上的增函數(shù).
所以f(x)-g(x)≥f(0)-g(0)=1,
即不等式f(x)≥g(x)+1在x∈[0,+∞)時恒成立,
當0<a<1時,函數(shù)y=f(x)-g(x)是上的減函數(shù),存在,使得f(x0)-g(x0)<f(0)-g(0)=1,即不等式f(x0)≥g(x0)+1不成立,
綜上,實數(shù)a的取值范圍是[1,+∞).
(3)當a=1時,由(2)得不等式f(x)>g(x)+1在x∈(0,+∞)時恒成立,
即ln(x+1)>,所以,
即< [ln(k+1)-lnk].
所以< (ln2-ln1),
< (ln3-ln2),
< (ln4-ln3),…,
< [ln(n+1)-lnn].
將上面各式相加得到,+++…+< [(ln2-ln1)+(ln3-ln2)+(ln4-ln3)+…+(ln(n+1)-lnn)]=ln(n+1)=f(n).
∴原不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若,
(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個代數(shù)式,滿足所求式?若能,請直接寫出該代數(shù)式;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)=ex﹣f(0)x+x2(e是自然對數(shù)的底數(shù)).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a與函數(shù)f(x)的圖象在區(qū)間[﹣1,2]上恰有2兩個不同的交點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有初級教師21人,中級教師14人,高級教師7人,現(xiàn)采用分層抽樣的方法從這些教師中抽取6人對績效工資情況進行調(diào)查.
(1)求應(yīng)從初級教師,中級教師,高級教師中分別抽取的人數(shù);
(2)若從抽取的6名教師中隨機抽取2名做進一步數(shù)據(jù)分析,求抽取的2名均為初級教師的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計算該數(shù)列的第10項,則判斷框中應(yīng)填的語句是( )
A.n>10
B.n≤10
C.n<9
D.n≤9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工r產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.
在統(tǒng)計學(xué)中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.
據(jù)上述信息,下列結(jié)論中正確的是( ).
A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高
C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓:,點,過點的直線與圓交于不同的兩點(不在y軸上).
(1)若直線的斜率為3,求的長度;
(2)設(shè)直線的斜率分別為,求證:為定值,并求出該定值;
(3)設(shè)的中點為,是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為去廣西桂林的某旅游團包飛機去旅游,其中旅行社的包機費為10000元,旅游團中的每人的飛機票按以下方式與旅行社結(jié)算:若旅游團的人數(shù)在20或20以下,飛機票每人收費800元;若旅游團的人數(shù)多于20,則實行優(yōu)惠方案,每多1人,機票費每張減少10元,但旅游團的人數(shù)最多為75,則該旅行社可獲得利潤的最大值為( )
A. 12000元B. 15000元C. 12500元D. 20000元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com