設(shè)函數(shù)f(x)=x2+bx-3,對(duì)于給定的實(shí)數(shù)b,f(x)在區(qū)間[b-2,b+2]上有最大值M(b)和最小值m(b),記g(b)=M(b)-m(b).
(1)求g(b)的解析式;
(2)問(wèn)b為何值時(shí),g(b)有最小值?并求出g(b)的最小值.
【答案】分析:(1)根據(jù)所給的二次函數(shù)的性質(zhì),寫(xiě)出對(duì)于對(duì)稱(chēng)軸所在的區(qū)間不同時(shí),對(duì)應(yīng)的函數(shù)的最大值、最小值,即可求得函數(shù)g(b)的解析式;
(2)根據(jù)(1)求得的結(jié)果,利用二次函數(shù)在定區(qū)間上的最值的求法,以及分段函數(shù)求最值的方法即可求得結(jié)果.
解答:解:(1),拋物線開(kāi)口向上,其對(duì)稱(chēng)軸方程為,下面就對(duì)稱(chēng)軸與區(qū)間[b-2,b+2]端點(diǎn)的相對(duì)位置分段討論:
①當(dāng)時(shí),,
此時(shí)M(b)=f(b+2)=2b2+6b+1,
②當(dāng)時(shí),,
此時(shí)M(b)=f(b-2)=2b2-6b+1,
③當(dāng)時(shí),,f(x)在區(qū)間[b-2,b+2]上遞增,
此時(shí)M(b)=f(b+2)=2b2+6b+1,m(b)=f(b-2)=2b2-6b+1.g(b)=12b.
④當(dāng)時(shí),,f(x)在區(qū)間[b-2,b+2]上遞減,
此時(shí)M(b)=f(b-2)=2b2-6b+1,m(b)=f(b+2)=2b2+6b+1.g(b)=-12b.
綜上所得
(2)當(dāng)時(shí),;
當(dāng)時(shí),遞減,g(b)>g(0)=4;
當(dāng)時(shí),遞增,g(b)≥g(0)=4;
當(dāng)時(shí),
綜上所述,當(dāng)b=0時(shí),[g(b)]min=4.
點(diǎn)評(píng):本題看出二次函數(shù)的性質(zhì),針對(duì)于函數(shù)的對(duì)稱(chēng)軸是一個(gè)變化的值,需要對(duì)對(duì)稱(chēng)軸所在的區(qū)間進(jìn)行討論,本題是一個(gè)綜合題目,是一個(gè)易錯(cuò)題.屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案