精英家教網 > 高中數學 > 題目詳情

【題目】已知x、y滿足約束條件 ,若目標函數z=ax+by(a>0,b>0)的最大值為7,則 的最小值為

【答案】7
【解析】解:作出不等式組 表示的平面區(qū)域,
得到如圖的△ABC及其內部,其中A(1,0),B(3,4),C(0,1)
設z=F(x,y)=ax+by(a>0,b>0),
將直線l:z=ax+by進行平移,并觀察直線l在x軸上的截距變化,
可得當l經過點B時,目標函數z達到最大值.
∴zmax=F(3,4)=7,即3a+4b=7.
因此, = (3a+4b)( )= [25+12( )],
∵a>0,b>0,可得 ≥2 =2,
(25+12×2)=7,當且僅當a=b=1時, 的最小值為7.
所以答案是:7

【考點精析】本題主要考查了基本不等式在最值問題中的應用的相關知識點,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),圓的參數方程為為參數),圓的參數方程為為參數).若直線分別與圓和圓交于不同于原點的點

(1)以直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,求圓和圓的極坐標方程;

(2)求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調查,調查結果如下表:

本數
人數
性別

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數為 X,求隨機變量 X的分布列和數學期望;
(III)試判斷男學生閱讀名著本數的方差 與女學生閱讀名著本數的方差 的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】、為曲線上兩點,的橫坐標之和為

(1)求直線的斜率;

(2)為曲線上一點,處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四面體ABCD中,AB、BC、BD兩兩垂直,AB=BC=BD=4,E、F分別為棱BC、AD的中點.

(1)求異面直線AB與EF所成角的余弦值;
(2)求E到平面ACD的距離;
(3)求EF與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系原點O為極點,以x軸非負半軸為極軸,以平面直角坐標系的長度單位為長度單位建立極坐標系.已知直線l的參數方程為 (t為參數),曲線C的極坐標方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標方程;
(Ⅱ) 設直線l與曲線C相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數,且過點,求:(1)求橢圓方程;

(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點,有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩支球隊進行總決賽,比賽采用五場三勝制,即若有一隊先勝三場,則此隊為總冠軍,比賽就此結束.因兩隊實力相當,每場比賽兩隊獲勝的可能性均為二分之一.據以往資料統(tǒng)計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.

(1)求總決賽中獲得門票總收入恰好為150萬元且甲獲得總冠軍的概率;

(2)設總決賽中獲得的門票總收入為,求的分布列和數學期望

查看答案和解析>>

同步練習冊答案