【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若時(shí)恒成立,求實(shí)數(shù)取值范圍.

【答案】見(jiàn)解析;(Ⅱ).

【解析】試題分析:(Ⅰ)分情況討論的范圍,求出,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ) 恒成立, 恒成立,令,分三種情況討論的范圍,分別利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,求出最小值,篩選出符合題意的實(shí)數(shù)的取值范圍即可.

試題解析:(Ⅰ)

當(dāng)時(shí), 上遞增,在上遞減;

當(dāng)時(shí), 上遞減;

當(dāng)時(shí), 上遞減,在上遞增.

(Ⅱ)恒成立

,

(1)當(dāng)時(shí), 函數(shù)上單調(diào)遞增,

因?yàn)?/span>,所以, 時(shí), ,符合題意;

(2)當(dāng) 時(shí), ,方程有兩不等式根,

且對(duì)稱(chēng)軸 ,可得

所以,函數(shù)上單調(diào)遞增,

,所以, 時(shí), ,符合題意;

(3)當(dāng) 時(shí),由 ,可得

所以 時(shí),函數(shù) 單調(diào)遞減;

所以,當(dāng)時(shí), 不符合題意;

綜上所述, 的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點(diǎn)列Bn(n,0)滿(mǎn)足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),若交于兩點(diǎn).

(Ⅰ)求圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)的值.

【答案】(1);(2)1.

【解析】試題分析:(1)先根據(jù) 將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)先將直線參數(shù)方程調(diào)整化簡(jiǎn),再將直線參數(shù)方程代入圓直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得,最后利用韋達(dá)定理求解

試題解析:(Ⅰ)由,得,

(Ⅱ)把,

代入上式得,

,則, ,

.

型】解答
結(jié)束】
23

【題目】證明:(Ⅰ)已知是正實(shí)數(shù).求證 ;

(Ⅱ)已知, .求證 中至少有一個(gè)是負(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率 ,過(guò)點(diǎn)A(0,﹣b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)已知定點(diǎn)E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn),問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)體經(jīng)營(yíng)者把開(kāi)始六個(gè)月試銷(xiāo)A、B兩種商品的逐月投資與所獲純利潤(rùn)列成下表:

投資A商品金額(萬(wàn)元)

1

2

3

4

5

6

獲純利潤(rùn)(萬(wàn)元)

0.65

1.39

1.85

2

1.84

1.40

投資B商品金額(萬(wàn)元)

1

2

3

4

5

6

獲純利潤(rùn)(萬(wàn)元)

0.25

0.49

0.76

1

1.26

1.51

該經(jīng)營(yíng)者準(zhǔn)備下月投入12萬(wàn)元經(jīng)營(yíng)這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算請(qǐng)你幫助制定一下資金投入方案,使得該經(jīng)營(yíng)者能獲得最大利潤(rùn),并按你的方案求出該經(jīng)營(yíng)者下月可獲得的最大利潤(rùn)(結(jié)果保留兩個(gè)有效數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下關(guān)于圓錐曲線的命題中

①設(shè)是兩個(gè)定點(diǎn), 為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡為雙曲線的一支;②過(guò)定圓上一定點(diǎn)作圓的動(dòng)弦, 為坐標(biāo)原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線的離心率;④雙曲線與橢圓有相同的焦點(diǎn).

其中真命題的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),線段的垂直平分線與交于點(diǎn).

(1)求點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡交于兩點(diǎn),在軸上是否存在定點(diǎn)使以為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDC,ADDCAP2,AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿(mǎn)足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為G()(萬(wàn)元),其中固定成本為萬(wàn)元,并且每生產(chǎn)百臺(tái)的生產(chǎn)成本為萬(wàn)元(總成本 = 固定成本 + 生產(chǎn)成本);銷(xiāo)售收入R()(萬(wàn)元)滿(mǎn)足:,假定該產(chǎn)品產(chǎn)銷(xiāo)平衡,那么根據(jù)上述統(tǒng)計(jì)規(guī)律:

(Ⅰ)要使工廠有贏利,產(chǎn)量應(yīng)控制在什么范圍?

(Ⅱ)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使贏利最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案