【題目】設(shè)全集U=R,已知集合A={x||x﹣a|≤1},B={x|(4﹣x)(x﹣1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=4,A={x||x﹣a|≤1}

={x|﹣1+a≤x≤1+a}

={x|3≤x≤5},

B={x|(4﹣x)(x﹣1)≤0}

={x|x≥4或x≤1},

∴A∪B={x|x≥3或x≤1}


(2)解:A={x||x﹣a|≤1}

={x|﹣1+a≤x≤1+a},

B={x|(4﹣x)(x﹣1)≤0}

={x|x≥4或x≤1},

若A∩B=A,則AB,

∴﹣1+a≥4或1+a≤1,

∴a≥5或a≤0


【解析】(1)當(dāng)a=4,A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a}={x|3≤x≤5},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},由此能求出A∪B.(2)A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},若A∩B=A,則AB,由此能求出實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】通過靈活運(yùn)用集合的并集運(yùn)算,掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運(yùn)輸收入均為25萬元.小王在該車運(yùn)輸累計(jì)收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價(jià)格為(25x)萬元(國家規(guī)定大貨車的報(bào)廢年限為10年).

1)大貨車運(yùn)輸?shù)降趲啄昴甑祝撥囘\(yùn)輸累計(jì)收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計(jì)收入+銷售收入-總支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(﹣∞,+∞)內(nèi)是增函數(shù);
(3)求函數(shù)f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是直線上的動(dòng)點(diǎn),過作直線, ,線段的垂直平分線與交于點(diǎn)

(1)求點(diǎn)的軌跡的方程;

(2)若點(diǎn)是直線上兩個(gè)不同的點(diǎn),且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過點(diǎn)P(1,1),傾斜角
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于兩點(diǎn)A,B,求點(diǎn)P到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《太陽的后裔》是第一部中國與韓國同步播出的韓劇,愛奇藝視頻網(wǎng)站在某大學(xué)隨機(jī)調(diào)查了110名學(xué)生,得到如表列聯(lián)表:由表中數(shù)據(jù)算得K2的觀測值k≈7.8,因此得到的正確結(jié)論是(

總計(jì)

喜歡

40

20

60

不喜歡

20

30

50

總計(jì)

60

50

110

(K2≥k)

0.100

0.010

0.001

k

2.706

6.635

10.828

附表:K2=
A.有99%以上的把握認(rèn)為“喜歡該電視劇與性別無關(guān)”
B.有99%以上的把握認(rèn)為“喜歡該電視劇與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上且以3為周期的奇函數(shù),當(dāng)時(shí), ,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是( )

A. 3 B. 5 C. 7 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}{n=1,2,3…,2015},圓C1x2+y2﹣4x﹣4y=0,圓C2x2+y2﹣2anx﹣2a2006ny=0,若圓C2平分圓C1的周長,則{an}的所有項(xiàng)的和為( )

A. 2014 B. 2015 C. 4028 D. 4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足:f(﹣x)+f(x)=ex+ex , 則稱f(x)為“e函數(shù)”.
(1)試判斷f(x)=ex+x3是否為“e函數(shù)”,并說明理由;
(2)若f(x)為“e函數(shù)”且
(。┣笞C:f(x)的零點(diǎn)在 上;
(ⅱ)求證:對(duì)任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案