.(本小題滿分13分)
已知橢圓
的焦點為
,
,
離心率為
,直線
與
軸,
軸分別交于點
,
.
(Ⅰ)若點
是橢圓
的一個頂點,求橢圓
的方程;
(Ⅱ)若線段
上存在點
滿足
,求
的取值范圍.
解法一:(Ⅰ)由橢圓的離心率為
,故
, …………………1分
由
,得
, ∴
, …………………4分
所以所求的橢圓方程為
. …………………5分
(Ⅱ)由
,可設(shè)橢圓方程為
,
聯(lián)立
得
, …………………7分
已知線段
上存在點
滿足
,即線段
與橢圓
有公共點,
等價于方程
在
上有解.………………9分
∴
,
由
,故
,
故所求的
的取值范圍是
. …………………13分
解法二:(Ⅰ)同解法一;
(Ⅱ)由
,設(shè)橢圓方程為
,
聯(lián)立
得
, …………………7分
已知線段
上存在點
滿足
,即線段
與橢圓
有公共點,
等價于方程
在
有解. …………………9分
設(shè)
,
∴
,解得
∴
,
故所求的
的取值范圍是
. …………………13分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
過點A(a,0),B(0,b)的直
線傾斜角為
,原點到該直線的距離為
.
(1)求橢圓的方程;
(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若
求直線MN的方程;
(3)是否存在實數(shù)k,使直線
交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知A(1,1)是橢圓
上一點,F1,F2,是橢圓上的兩焦點,且滿足
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點,且直線AC,AD的斜率分別為
,若存在常數(shù)
使
,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
橢圓
:
與拋物線
:
的一個交點為M,拋物線
在點M處的切線過橢圓
的右焦點F.
(Ⅰ)若M
,求
和
的標(biāo)準(zhǔn)方程;
(II)求橢圓
離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知過橢圓C:
+
=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)
圖象的一條對稱軸的方程是
.
(1)求橢圓
C
的離心率e與直線AB的方程;
(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式
+
成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的焦點
,P為橢圓上的一點,已知
,則△
的面積為( )
A
9 B
12 C
10 D
8
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知點
,橢圓
的右準(zhǔn)線
與x軸相交于點D,右焦點F到上頂點的距離為
(1)求橢圓的方程;
(2)是否存在過點F且與x軸不垂直的直線
與橢圓交于A、B兩點,使得
?若存在,求出直線
;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓的長軸為A1A2,B為短軸的一個端點,若∠A1BA2=120°,則橢圓的離心率為
查看答案和解析>>