【題目】已知橢圓C:的長軸是短軸的兩倍,點在橢圓上.不過原點的直線l與橢圓相交于A、B兩點,設(shè)直線OA、l、OB的斜率分別為、、,且、、恰好構(gòu)成等比數(shù)列.
(Ⅰ)求橢圓C的方程.
(Ⅱ)試探究是否為定值?若是,求出這個值;否 則求出它的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(是自然對數(shù)的底數(shù),)
(1)討論的單調(diào)性,并證明有且僅有兩個零點;
(2)設(shè)是的一個零點,證明曲線在點處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班隨機抽查了20名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中A組學生每天學習數(shù)學時間不足1個小時,B組學生每天學習數(shù)學時間達到一個小時。學校規(guī)定90分及90分以上記為優(yōu)秀,75分及75分以上記為達標,75分以下記為未達標.
(1)分別求出A、B兩組學生的平均分、并估計全班的數(shù)學平均分;
(2)現(xiàn)在從成績優(yōu)秀的學生中任意抽取2人,求這兩人恰好都來自B組的概率;
(3)根據(jù)成績得到如下列聯(lián)表:
①直接寫出表中的值;
②判斷是否有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關(guān).
參考公式與臨界值表:K2=.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度得到函數(shù)的圖象,有下列叫個結(jié)論:
在單調(diào)遞增; 為奇函數(shù);
的圖象關(guān)于直線對稱; 在的值域為.
其中正確的結(jié)論是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù),關(guān)于的方程,給出下列結(jié)論
①存在這樣的實數(shù),使得方程有3個不同的實根
②不存在這樣的實數(shù),是的方程有4個不同的實根
③存在這樣的實數(shù),是的方程有5個不同的實根
④不存在這樣的實數(shù),是的方程有6個不同的實根
其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】嫦娥四號月球探測器于2018年12月8日搭載長征三號乙運載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點43分左右,嫦娥四號順利進入了以月球球心為一個焦點的橢圓形軌道,如圖中軌道③所示,其近月點與月球表面距離為公里,遠月點與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線與圓O:相切.
(1)直線l過點(2,1)且截圓O所得的弦長為,求直線l的方程;
(2)已知直線y=3與圓O交于A,B兩點,P是圓上異于A,B的任意一點,且直線AP,BP與y軸相交于M,N點.判斷點M、N的縱坐標之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且,對任意實數(shù),成立.
(1)求函數(shù)的解析式;
(2)若,解關(guān)于的不等式;
(3)求最大的使得存在,只需,就有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本為萬元.
(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?
(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀(如圖).經(jīng)實驗知,每臺機器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com