二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.
解:(1)設(shè)f(x)=ax2+bx+c,由f(0)=1得c=1,
故f(x)=ax2+bx+1.
因為f(x+1)﹣f(x)=2x,
所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x.
即2ax+a+b=2x,
所以,∴,
所以f(x)=x2﹣x+1
(2)由題意得x2﹣x+1>2x+m在[﹣1,1]上恒成立.
即x2﹣3x+1﹣m>0在[﹣1,1]上恒成立.
設(shè)g(x)=x2﹣3x+1﹣m,其圖象的對稱軸為直線,
所以g(x)在[﹣1,1]上遞減.
故只需g(1)>0,即12﹣3×1+1﹣m>0,
解得m<﹣1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1,則函數(shù)y=f(x)-3的零點是
-1,2
-1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足:①在x=1時有極值;②二次函數(shù)圖象過點(0,-3),且在該點處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間與極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(
x
+1)=x+2
,求函數(shù)f(x)的解析式;
(2)若二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)滿足:f(0)=2,f(x)=f(-2-x),它的導(dǎo)函數(shù)的圖象與直線y=2x平行.
(I)求f(x)的解析式;
(II)若函數(shù)g(x)=xf(x)-x的圖象與直線y=m有三個公共點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知一次函數(shù)f(x)滿足條件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函數(shù)f(x)滿足條件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案