過平面區(qū)域內(nèi)一點(diǎn)P作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,記∠APB=α,則當(dāng)α最小時(shí)cosα=   
【答案】分析:先依據(jù)不等式組 ,結(jié)合二元一次不等式(組)與平面區(qū)域的關(guān)系畫出其表示的平面區(qū)域,再利用圓的方程畫出圖形,確定α最小時(shí)點(diǎn)P的位置,最后利用二倍角公式計(jì)算即可.
解答:解:如圖陰影部分表示 ,確定的平面區(qū)域,
當(dāng)P離圓O最遠(yuǎn)時(shí)α最小,此時(shí)點(diǎn)P坐標(biāo)為:(-4,-2),
記∠APO=β,則sinβ=
則cosα=1-2sin2β=1-2×(2
計(jì)算得cosα=,
故答案為:
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市張家港外國語學(xué)校高二(上)周日數(shù)學(xué)試卷10(理科)(解析版) 題型:填空題

過平面區(qū)域內(nèi)一點(diǎn)P作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,記∠APB=α,則當(dāng)α最小時(shí)cosα=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

過平面區(qū)域內(nèi)一點(diǎn)P作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,記∠APB=α,當(dāng)α最小時(shí),此時(shí)點(diǎn)P坐標(biāo)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省無錫市高考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

過平面區(qū)域內(nèi)一點(diǎn)P作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,記∠APB=α,則當(dāng)α最小時(shí)cosα=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省模擬題 題型:填空題

過平面區(qū)域內(nèi)一點(diǎn)P作圓的兩條切線,切點(diǎn)分別為A,B,記,則當(dāng)α最小時(shí)=(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案