(2010•西城區(qū)一模)已知圓C的參數(shù)方程為(θ為參數(shù)),若P是圓C與y軸正半軸的交點(diǎn),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求過點(diǎn)P的圓C的切線的極坐標(biāo)方程.

 

【解析】

試題分析:先將圓的參數(shù)方程化簡成圓的標(biāo)準(zhǔn)方程,再利用圓心到直線的距離等于半徑求出切線方程,再將由代入直線方程即可求得直線的極坐標(biāo)方程.

【解析】
根據(jù)題意,圓C的參數(shù)方程為(θ為參數(shù))

,

可得點(diǎn)P(0,1),圓C在點(diǎn)P(0,1)的切線為,

得所求的切線的極坐標(biāo)方程:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:選擇題

在直角坐標(biāo)系下,若矩陣對應(yīng)的變換將點(diǎn)P(2,﹣1)變到點(diǎn)p′(1,﹣2),則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題

在同一平面直角坐標(biāo)系中,直線x﹣2y=2變成直線2x′﹣y′=4的伸縮變換是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

在同一坐標(biāo)系中,將圓x2+y2=4在伸縮變換下的方程是( )

A. B. C.4X2+9Y2=1 D.2X2+3Y2=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

(2011•溫州二模)將函數(shù)y=﹣sinx(x∈[0,π])的圖象繞原點(diǎn)順時(shí)針方向旋轉(zhuǎn)角得到曲線C,對于每一個(gè)旋轉(zhuǎn)角θ,曲線C都是一個(gè)函數(shù)的圖象,則θ的最大值是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

用與底面成45°角的平面截圓柱得一橢圓截線,則該橢圓的離心率為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:選擇題

已知圓柱的底面半徑為2,高為3,用一個(gè)與底面不平行的平面去截,若所截得的截面為橢圓,則橢圓的離心率的最大值為( )

A.1 B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•珠海二模)(幾何證明選講選做題)如圖,CD是圓O的切線,切點(diǎn)為C,點(diǎn)B在圓O上,BC=2,∠BCD=30°,則圓O的面積為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

如圖,PAB、PCD為⊙O的兩條割線,AD、BC相交于點(diǎn)E,則圖中相似三角形共有( )

A.1對 B.2對 C.3對 D.4對

 

查看答案和解析>>

同步練習(xí)冊答案