一個棱錐的三視圖如圖,則該棱錐的全面積(單位:)為

A. B.
C. D.

A

解析試題分析:由三視圖及題設(shè)條件知,此幾何體為一個三棱錐,其高已知,底面是長度為6的直角三角形,故先求出底面積,再各個側(cè)面積,最后相加即可得全面積
解:此幾何體為一個三棱錐,其底面是邊長為6的等腰直角三角形,頂點在底面的投影是斜邊的中點,由底面是邊長為6的等腰直角三角形知其底面積是×6×6=18
又直角三角形斜邊的中點到兩直角邊的距離都是3,棱錐高為4,
所以三個側(cè)面中與底面垂直的側(cè)面三角形高是4,底面邊長為6,其余兩個側(cè)面的斜高為=5故三個側(cè)面中與底面垂直的三角形的面積為×4×6=12,
另兩個側(cè)面三角形的面積都是×6×5=15
故此幾何體的全面積是18+2×15+12=48+12
故選A
考點:三視圖求幾何體的面積、體積
點評:本題考查對三視圖的理解與應(yīng)用,主要考查三視圖與實物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,本題求的是三棱錐的體積.三視圖的投影規(guī)則是:“主視、俯視 長對正;主視、左視高平齊,左視、俯視 寬相等”.三視圖是高考的新增考點,不時出現(xiàn)在高考試題中,應(yīng)予以重視

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知A,B,C,D是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6則該球的表面積為

A.16B.24C.32D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

一個幾何體的三視圖如右圖所示,則它的體積為

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

一個幾何體的三視圖如圖所示,則該幾何體的體積為 (      )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

一個容器的外形是一個棱長為的正方體,其三視圖如圖所示,則容器的容積為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知某四棱錐的三視圖(單位:cm)如圖所示,則該四棱錐的體積是

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖在棱長為5的正方體中,是棱上的一條線段,且中點,點是棱上動點,則四面體的體積(     )

A.是變量且有最大值B.是變量且有最小值
C.是變量且有最大值和最小值D.是常量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖為一個幾何體的三視圖,正視圖和側(cè)視圖均為矩形,俯視圖中曲線部分為半圓,尺寸如圖,則該幾何體的體積為

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在棱長為的正方體上,分別用過共頂點的三條棱中點的平面截該正方形,則截去個三棱錐后 ,剩下的幾何體的體積是(    )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案