長方體的一條對角線與長方體的棱所組成的異面直線有( 。
分析:根據(jù)異面直線的意義,需要找與長方體的對角線(如AC1)既不平行又不相交的棱,要求與長方體體對角線AC1異面的棱所在的直線,只要去掉與AC1相交的六條棱,其余的都與體對角線異面,寫出結果.
解答:解:在正方體中沒有與體的對角線平行的棱,
∴要求與長方體體對角線AC1異面的棱所在的直線,
只要去掉與AC1相交的六條棱,其余的都與體對角線異面,
∴與AC1異面的棱有:BB1、A1D1、A1B1、BC、CD、DD1
∴長方體的一條對角線與長方體的棱所組成的異面直線有6對.
故選C.
點評:本題考查異面直線的判斷,只要注意兩條直線不在任何一個平面中,這兩條直線就是異面直線,也可以先找出平行和相交的直線,去掉平行和相交的直線即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:101網(wǎng)校同步練習 高三數(shù)學 蘇教版(新課標·2004年初審) 蘇教版 題型:013

長方體的一條對角線與長方體的棱所組成的異面直線有

[  ]

A.2對

B.3對

C.6對

D.12對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體的一條對角線與兩組平行的面所成的角都是30°,則長方體的這條對角線與另一組平行的面所成的角是(  )

A.45°    

B.60°    

C.30°    

D.45°或135°

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省東莞市高二下學期期末考試(理科)數(shù)學卷 題型:選擇題

如圖,矩形的一條對角線與兩鄰邊所成的角分別為,則.長方體的一條對角線與三條共頂點的棱所成的角分別為,與三個共頂點的面所成的角分別為、,用類比推理的方法可知成立的關系式是

 

 

 

 

A.     B.[來源:Zxxk.Com]

C.     D.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

長方體的一條對角線與長方體的棱所組成的異面直線有


  1. A.
    2對
  2. B.
    3對
  3. C.
    6對
  4. D.
    12對

查看答案和解析>>

同步練習冊答案