分析 把已知遞推式兩邊平方,可得數(shù)列{$\frac{1}{{{a}_{n}}^{2}}$}是以1為首項,以4為公差的等差數(shù)列,求出等差數(shù)列的通項公式后可得數(shù)列{an}的通項公式.
解答 解:由$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,兩邊平方可得,$\frac{1}{{{a}_{n+1}}^{2}}=\frac{1}{{{a}_{n}}^{2}}+4$,
即$\frac{1}{{{a}_{n+1}}^{2}}-\frac{1}{{{a}_{n}}^{2}}=4$,
又a1=1,∴$\frac{1}{{{a}_{1}}^{2}}=1$,
則數(shù)列{$\frac{1}{{{a}_{n}}^{2}}$}是以1為首項,以4為公差的等差數(shù)列,
∴$\frac{1}{{{a}_{n}}^{2}}=1+4(n-1)=4n-3$,
則${{a}_{n}}^{2}=\frac{1}{4n-3}$,
∴${a}_{n}=\sqrt{\frac{1}{4n-3}}$.
故答案為:$\sqrt{\frac{1}{4n-3}}$.
點評 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列通項公式的求法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}$ | B. | $\overrightarrow{CE}$ | C. | $\overrightarrow{DE}$ | D. | $\overrightarrow{ED}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com