【題目】某學校在一次第二課堂活動中,特意設置了過關智力游戲,游戲共五關.規(guī)定第一關沒過者沒獎勵,過 關者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關游戲中過關數(shù)的條形圖,以此頻率估計概率.

(Ⅰ)估計小明在1次游戲中所得獎品數(shù)的期望值;

(Ⅱ)估計小明在3 次游戲中至少過兩關的平均次數(shù);

(Ⅲ)估計小明在3 次游戲中所得獎品超過30件的概率.

【答案】(1)4;(2)2.1;(3)0.031

【解析】試題分析:1列出小明在1次游戲中所得獎品數(shù)為的分布列,根據(jù)分布列求出期望即可;2由表可得小明在1 次游戲中至少過兩關的概率為0.7,由二項分布可得結果;3分析可得小明在3 次游戲中所得獎品超過30件含三類:恰好一次和兩次,恰好二次,恰好三次,由互斥事件及相互獨立事件發(fā)生的概率可得結果.

試題解析: (1)設小明在1次游戲中所得獎品數(shù)為,則的分布列為

0

1

2

4

8

16

P

0.1

0.2

0.3

0.2

0.1

0.1

的期望值;

(2)小明在1 次游戲中至少過兩關的概率為0.7,

設小明在3 次游戲中至少過兩關的次數(shù)為X,可知,

X的平均次數(shù);

(3)小明在3 次游戲中所得獎品超過30件含三類:恰好一次和兩次,恰好二次,恰好三次

,

=,

所以小明在3 次游戲中所得獎品超過30件的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x),在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則xf(x)<0的解集為(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或0<x<3}
C.{x|﹣3<x<0或0<x<3}
D.{x|x<﹣3或x>3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,是偶函數(shù),且在區(qū)間(0,1)上為增函數(shù)的是(
A.y=|x|
B.y=1﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校在一次第二課堂活動中,特意設置了過關智力游戲,游戲共五關.規(guī)定第一關沒過者沒獎勵,過關者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關游戲中過關數(shù)的條形圖,以此頻率估計概率.

(Ⅰ)求小明在這十次游戲中所得獎品數(shù)的均值;

(Ⅱ)規(guī)定過三關者才能玩另一個高級別的游戲,估計小明一次游戲后能玩另一個游戲的概率;

(Ⅲ)已知小明在某四次游戲中所過關數(shù)為{2,2,3,4},小聰在某四次游戲中所過關數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎品總數(shù)超過10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修44:坐標系與參數(shù)方程

在直角坐標系中,已知直線l1 , ),拋物線C t為參數(shù)).以原點為極點, 軸的非負半軸為極軸建立極坐標系.

(Ⅰ)求直線l1 和拋物線C的極坐標方程;

(Ⅱ)若直線l1 和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的單調(diào)區(qū)間;

2)若時,不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, // , , 點 邊的中點, 將△沿折起,使平面⊥平面,連接, , , 得到如圖所示的幾何體.

(Ⅰ)求證: ⊥平面;

(Ⅱ)若, ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積是 ,表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函數(shù)的最值;
(2)若函數(shù)在定義域內(nèi)是單調(diào)函數(shù),求a取值的范圍.

查看答案和解析>>

同步練習冊答案