已知函數(shù)f(x)=x2(ax+b)(a,b∈R)在x=2時有極值,其圖象在點(1,f(1))處的切線與直線3x+y=0平行,則函數(shù)f(x)的單調(diào)減區(qū)間為( )
A.(-∞,0)
B.(0,2)
C.(2,+∞)
D.(-∞,+∞)
【答案】分析:求出f′(x),根據(jù)函數(shù)在x=2時取極值得到f′(2)等于0,代入得到①;又切線與已知直線平行得到兩直線的斜率相等,求出已知直線的斜率等于切線的斜率,根據(jù)切線斜率等于f′(1)列出②,把①②聯(lián)立即可求出a與b的值,把a與b的值代入到f′(x)中并令導(dǎo)函數(shù)小于0,列出關(guān)于x的不等式,求出x的解集即為函數(shù)的單調(diào)遞減區(qū)間.
解答:解:f′(x)=3ax2+2bx,因為函數(shù)在x=2時有極值,所以f′(2)=12a+4b=0即3a+b=0①;
又直線3x+y=0的斜率為-3,則切線的斜率k=f′(1)=3a+2b=-3②,
聯(lián)立①②解得a=1,b=-3,
令f′(x)=3x2-6x<0即3x(x-2)<0,
解得0<x<2.
故選B
點評:此題要求學(xué)生會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會利用導(dǎo)數(shù)求曲線上過某點切線的斜率,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案