【題目】4名男同學(xué)中選出2人,6名女同學(xué)中選出3人,并將選出的5人排成一排.

1)共有多少種不同的排法?

2)若選出的2名男同學(xué)不相鄰,共有多少種不同的排法?(用數(shù)字表示)

【答案】1)共有14400種不同的排列法.(2)選出的2名男同學(xué)不相鄰,共有8640種不同的排法

【解析】

1)從名男生中選出人,有種方法,從名女生中選出人,有種方法,根據(jù)分步計(jì)數(shù)原理,選出人共有種方法.然后將選出的名學(xué)生進(jìn)行排列,于是,所求的排法種數(shù)是

,

故所求的排法種數(shù)為…………………………………….5

2)在選出的人中,若名男生不相鄰,則第一步先排名女生,有種排法,第二步讓男生插空,有種排法,因此所求的排法種數(shù)是

故選出的人中,名男同學(xué)不相鄰共有種排法. ……………………….12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的右焦點(diǎn)為點(diǎn)的坐標(biāo)為,為坐標(biāo)原點(diǎn),是等腰直角三角形.

(1)求橢圓的方程;

(2)經(jīng)過點(diǎn)作直線交橢圓兩點(diǎn),求面積的最大值;

(3)是否存在直線交橢圓于兩點(diǎn),使點(diǎn)的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)都是1的兩個(gè)數(shù)列{},{}(≠0,n∈N*)滿足

(1)令,求數(shù)列{}的通項(xiàng)公式;

(2)若,求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足約束條件的最小值為7,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽。

(1)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率;

(2)記1號(hào),2號(hào)射箭運(yùn)動(dòng)員,射箭的環(huán)數(shù)為所有取值為0,1,2,3...,10)。

根據(jù)教練員提供的資料,其概率分布如下表:

0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0.06

0.04

0.06

0.3

0.2

0.3

0.04

0

0

0

0

0.04

0.05

0.05

0.2

0.32

0.32

0.02

  1. 若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;
  2. 判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校100名高三學(xué)生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,視力在4.65.0之間的學(xué)生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:.

1)求直線和曲線的直角坐標(biāo)方程;

2,直線和曲線交于、兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案