16.貴陽市某數(shù)學(xué)教師從他所教的2015屆高三(X)班與高三(Y)班學(xué)生的高考數(shù)學(xué)成績中,隨機(jī)抽取20名學(xué)生的成績繪制成頻率分布直方圖,如圖所示.
(I)求頻率分布直方圖中a的值,并估計(jì)高三(X)班與高三(Y)班學(xué)生在此次考試中數(shù)學(xué)成績的優(yōu)良率(考試分?jǐn)?shù)不小于110分為優(yōu)良分);
(Ⅱ)求這20名學(xué)生的數(shù)學(xué)考試成績的平均分.

分析 (I)求出組距,利用頻率和為1,可得a的值,即可求出在此次考試中數(shù)學(xué)成績的優(yōu)良率;
(Ⅱ)數(shù)據(jù)的平均數(shù)是各組組中值與頻率乘積的累加值,由已知中的頻率分布直方圖求出各組組中值及頻率,代入可得答案.

解答 解:(I)由頻率分布直方圖可知組距為20,∴(2a+3a+7a+6a+2a)×20=1,
∴a=0.0025,
此次考試中數(shù)學(xué)成績的優(yōu)良率(6a+2a)×20=0.4=40%;
(Ⅱ)這20名學(xué)生的數(shù)學(xué)考試成績的平均分=2a×20×60+3a×20×80+7a×20×100+6a×20×120+2a×20×140=103.

點(diǎn)評 本題考查頻率分布直方圖,考查平均數(shù)的計(jì)算.在解決頻率分布直方圖的問題時,注意由圖求頻率時是縱坐標(biāo)乘以組距.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)(1,$\frac{1}{3}$)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{$\frac{1}{_{n}_{n+1}}$}前n項(xiàng)和為Tn,則滿足Tn>$\frac{1000}{2015}$的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)xOy中,已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}{t^2}\\ y=\frac{1}{4}t\end{array}$(t為參數(shù)),曲線與直線l:y=$\frac{1}{2}$x相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$\left\{{\begin{array}{l}{2x+3y≤6}\\{x-y≥0}\\{y≥0}\end{array}}$則z=3x-y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{3i}{-1+2i}$的共軛復(fù)數(shù)的虛部為(  )
A.$\frac{3}{5}i$B.$-\frac{3}{5}i$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知復(fù)數(shù)z滿足:z(1-i)=2+4i,其中i為虛數(shù)單位,則復(fù)數(shù)z的模為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且2a5-a3=13,S4=16.
(1)求數(shù)列{an}的前n項(xiàng)和Sn
(2)設(shè)Tn=$\sum_{i=1}^{n}$(-1)iai,若對一切正整數(shù)n,不等式λTn<[an+1+(-1)n+1an]•2n-1恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(n>m>2),使得S2,Sm-S2,Sn-Sm成等比數(shù)列?若存在,求出所有的m,n;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖:
(Ⅰ)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過
4000元
經(jīng)濟(jì)損失超過
4000元
合計(jì)
捐款超過
500元
30
捐款不超
過500元
6
合計(jì)(圖2)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=x+$\frac{2}{x}$有如下性質(zhì):函數(shù)在區(qū)間(0,$\sqrt{2}$]上是減函數(shù),在[$\sqrt{2}$,+∞)上是增函數(shù).根據(jù)上述性質(zhì)猜想函數(shù)y=x+$\frac{a}{x}$(a>0)在(0,+∞)上的單調(diào)性,并給出證明.

查看答案和解析>>

同步練習(xí)冊答案