分析 (1)證明A1M⊥MA,AM⊥AC,故可得A1M⊥平面MAC;
(2)連結(jié)AB1,AC1,由中位線定理得出MN∥AC1,故而MN∥平面A1ACC1.
解答 證明:(1)由題設(shè)知,∵A1A⊥面ABC,AC?面ABC,∴AC⊥A1A,
又∵∠BAC=90°,∴AC⊥AB,
∵AA1?平面AA1BB1,AB?平面AA1BB1,AA1∩AB=A,
∴AC⊥平面AA1BB1,A1M?平面AA1BB1
∴A1M⊥AC.
又∵四邊形AA1BB1為正方形,M為A1B的中點(diǎn),∴A1M⊥MA,
∵AC∩MA=A,AC?平面MAC,MA?平面MAC,∴A1M⊥平面MAC…(6分)
(2)連接AB1,AC1,由題意知,點(diǎn)M,N分別為AB1和B1C1的中點(diǎn),∴MN∥AC1.
又MN?平面A1ACC1,AC1?平面A1ACC1,∴MN∥平面A1ACC1.…(12分)
點(diǎn)評(píng) 本題考查了面面垂直,線面平行的判定,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{1}{4})$ | B. | $(\frac{1}{3},3)$ | C. | (1,2) | D. | $(2,\frac{9}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | -7 | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com