函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)判斷并證明f(x)在(-1,1)的單調(diào)性;
(Ⅲ)求滿足f(t-1)+f(t)<0的t的范圍.
分析:(Ⅰ)若奇函數(shù)在x=0處有定義,則f(0)=0,代入即可得b,再由f(
1
2
)=
2
5
代入即可得a值;
(Ⅱ)利用單調(diào)性定義即可證明;
(Ⅲ)利用函數(shù)的單調(diào)性和奇偶性將不等式中的f脫去,等價(jià)轉(zhuǎn)化為關(guān)于t的不等式組,解之即可.
解答:解:(Ⅰ)∵函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)的奇函數(shù)
∴f(0)=0,∴b=0
f(
1
2
)=
2
5

1
2
1+(
1
2
)
2
=
2
5
,∴a=1
f(x)=
x
1+x2
;
(Ⅱ)函數(shù)f(x)在(-1,1)上為增函數(shù),證明如下
在區(qū)間(-1,1)上任取x1,x2,令-1<x1<x2<1,
∴f(x1)-f(x2)=
x1
1+x12
-
x2
1+x22
=
(x1-x2)(1-x1x2)
(1+x12)(1+x22)
;
∵-1<x1<x2<1
∴x1-x2<0,1-x1x2>0,1+x12>0,1+x22>0
∴f(x1)-f(x2)<0,即f(x1)<f(x2
故函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(Ⅲ)∵f(t-1)+f(t)<0
∴f(t-1)<-f(t)
∴f(t-1)<f(-t) 
∵函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù)
-1<t-1<1
-1<-t<1
t-1<-t

∴0<t<
1
2
點(diǎn)評:本題考查函數(shù)奇偶性與單調(diào)性的性質(zhì)應(yīng)用,著重考查學(xué)生理解函數(shù)奇偶性與用定義證明單調(diào)性及解方程,解不等式組的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+2b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(1)=
1
2

(1)求函數(shù)f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)解不等式f(2-t)+f(
t
5
)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
滿足對任意的實(shí)數(shù)x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-1x+1
,  其中 a∈R

(1)當(dāng)a=1時(shí),求函數(shù)滿足f(x)≤1時(shí)的x的集合;
(2)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
a-1x
 (a∈R)
,g(x)=lnx.
(1)若對任意的實(shí)數(shù)a,函數(shù)f(x)與g(x)的圖象在x=x0處的切線斜率總相等,求x0的值;
(2)若a>0,對任意x>0,不等式f(x)-g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案